PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computer Simulation of Cyclic Polymers in Disordered Media

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to determine the structure and dynamical properties of cyclic polymers (rings) in a random environment we developed and studied an idealized model. All atomic details were suppressed, chains were represented as a sequence of identical beads and were embedded to a simple cubic lattice. A set of obstacles was also randomly introduced into the system and it can be viewed as a model of porous media. A Monte Carlo sampling algorithm using local changes of chain conformation was used to sample the conformational space. It was shown that the mean dimensions of the chain changed with the concentration of obstacles but these changes were non-monotonic. The long-time (diffusion) dynamic properties of the system were also studied. The differences in the mobility of chains depending on the obstacle density were shown and discussed.
Twórcy
autor
autor
  • Department of Chemistry, University of Warsaw Pasteura 1, 02-093 Warsaw, Poland, Phone: +48 22 822 0211, Fax: +48 22 822 5996
Bibliografia
  • [1] A. Baumgärtner and M. Muthukumar, A trapped polymer in random porous media, Adv. Chem. Phys. 94, 625-708 (1996).
  • [2] M. Ediger, Spatially Heterogeneous Dynamics In Supercooled Liquids, Annu. Rev. Phys. Chem. 51, 99-128 (2000).
  • [3] E. Eisenriegler, Polymers near Surfaces, World Scientific, Singapore 1993.
  • [4] A. Sikorski, Polymer Chains in Confinement and Porous Media, Solid State Phenom. 138, 451-475 (2008).
  • [5] G.W. Slater and S.Y. Wu, Reptation, Entropic Trapping, Percolation, and Rouse Dynamics of Polymers in “Random” Environments, Phys. Rev. Lett. 75, 164-167 (1995).
  • [6] V. Yamakov, D. Stauffer, A. Milchev, G.M. Foo and R.B. Pandey, Crossover Dynamics for Polymer Simulation in Porous Media, Phys. Rev. Lett. 79, 2356-2358 (1997).
  • [7] V. Yamakov and A. Milchev, Diffusion of a polymer chain in porous media, Phys. Rev. E 55, 1704-1712 (1997).
  • [8] G.I. Nixon and W.G. Slater, Relaxation length of a polymer chain in a quenched disordered medium, Phys. Rev. E 60, 3170-3173 (1999).
  • [9] P.M. Saville and E.M. Sevick, Collision of a Field-Driven Polymer with a Finite-Sized Obstacle: A Brownian Dynamics Simulation, Macromolecules 32, 892-899 (1999).
  • [10] S.H. Chern and R.D. Coalson, Entropic trapping of a flexible polymer in a fixed network of random obstacles, J. Chem. Phys. 111, 1778-1781 (1999).
  • [11] A. Dua and B.J. Cherayil, The anomalous diffusion of polymers in random media, J. Chem. Phys. 112, 421-427 (2000).
  • [12] G.I. Nixon and W.G. Slater, Saturation and entropic trapping of monodisperse polymers in porous media, J. Chem. Phys. 117, 4042-4046 (2002).
  • [13] A. Bhattacharya, Conformation and drift of a telechelic chain in porous media, J. Phys.: Condens. Matter 16, 5203-5211 (2004).
  • [14] A.J. Moreno and W. Kob, Relaxation dynamics of a linear molecule in a random static medium: A scaling analysis, J.Chem. Phys. 121, 380-386 (2004).
  • [15] G.C. Randall and P.S. Doyle, Collision of a DNA Polymer with a Small Obstacle, Macromolecules 39, 7734-7745 (2006).
  • [16] R. Chang and A. Yethiraj, Dynamics of Chain Molecules in Disordered Materials, Phys. Rev. Lett. 96, 107802 (2006).
  • [17] O.A. Hickey and W.G. Slater, The diffusion coefficient of a polymer in an array of obstacles is a non-monotonic function of the degree of disorder in the medium, Phys. Lett. A 364, 448-452 (2007).
  • [18] A. Balducci and P.S. Doyle, Conformational Preconditioning by Electrophoresis of DNA through a Finite Obstacle Array, Macromolecules 41, 5485-5492 (2008).
  • [19] B.J. Sung, R. Chang and A. Yethiraj, Swelling of polymers in porous media, J. Chem. Phys. 130, 124908 (2009).
  • [20] P. Romiszowski, A. Sikorski, Properties of Linear Polymer Chains in Porous Media, J. Non-Crystal. Solids 352, 4303-4308 (2006).
  • [21] J.A. Semlyen, Cyclic Polymers (2nd edition), Kluwer, Dordrecht 2000.
  • [22] T.C.B. McLeish, Polymers Without Beginning or End, Science 297, 2005-2006 (2002).
  • [23] T.C.B. McLeish, Polymer dynamics: Floored by the rings, Nature Mater. 7, 933-935 (2008).
  • [24] M. Kapnistos, M. Lang, D. Vlassopoulos, W. PyckhoutHintzen, D. Richter, D. Cho, T. Chang and M. Rubinstein, Unexpected power-law stress relaxation of entangled ring polymers, Nature Mater. 7, 997-1002 (2008).
  • [25] C.W. Bielawski, D. Benitez and R.H. Grubbs, An “Endless” Route to Cyclic Polymers, Science 297, 2041-2044 (2002).
  • [26] G. Beaucage, A.S. Kulkarni, Dimensional Description of Cyclic Macromolecules, Macromolecules 43, 532-537 (2010).
  • [27] V. Arrighi, S. Gagliardi, A.C. Dagger, J.A. Semlyen, J.S. Higgins and M.J. Shenton, Conformation of Cyclics and Linear Chain Polymers in Bulk by SANS, Macromolecules 37, 8057-8065 (2004).
  • [28] R.M. Robertson and D.E. Smith, Strong effects of molecular topology on diffusion of entangled DNA molecules, Proc. Natl. Acad. Sci. U.S.A. 104, 4824-4827 (2007).
  • [29] F. Baldelli Bombelli, F. Gambinossi, M. Lagi, D. Berti, G. Caminati, T. Brown, F. Sciortino, B. Norden and P. Baglioni, DNA Closed Nanostructures: A Structural and Monte Carlo Simulation Study, J. Chem. Phys. B 112, 15283-15294 (2008).
  • [30] S.P. Obukhov, M. Rubinstein and T. Duke, Dynamics of a Ring Polymer in a Gel, Phys. Rev. Lett. 73, 1263-1266 (1994).
  • [31] J. Klein, Dynamics of entangled linear, branched, and cyclic polymers, Macromolecules 19, 105-118 (1986).
  • [32] G. Zifferer and W. Preusser, Monte Carlo Simulation Studies of the Size and Shape of Ring Polymers, Macromol. Theory Simul. 10, 397-407 (2001).
  • [33] J. Reiter, Monte Carlo simulations of linear and cyclic chains on cubic and quadratic lattices, Macromolecules 23, 3811-3816 (1990).
  • [34] M. Bishop and J.P.J. Michels, The shape of ring polymers, J. Chem. Phys. 82, 1059-1061 (1985).
  • [35] M. Bishop, J.P.J. Michels, Scaling in three-dimensional linear and ring polymers, J. Chem. Phys. 84, 444-446 (1986).
  • [36] M. Bishop and C.J. Saltiel, Polymer shapes in two, four, and five dimensions, J. Chem. Phys. 88, 3976-3982 (1985).
  • [37] J. Suzuki, A. Takano and Y. Matsushita, Topological effect in ring polymers investigated with Monte Carlo simulation, J. Chem. Phys. 129, 034903 (2008).
  • [38] S. Brown and G. Szamel, Structure and dynamics of ring polymers, J. Chem. Phys. 108, 4705-4708 (1998).
  • [39] S. Brown and G. Szamel, Computer simulation study of the structure and dynamics of ring polymers, J. Chem. Phys. 109, 6184-6192 (1998).
  • [40] N. Kanaeda and T. Deguchi, Diffusion of a ring polymer in good solution via the Brownian dynamics with no bond crossing, J. Phys. A: Math. Theor. 41, 145004 (2008).
  • [41] S. Brown, T. Lenczycki and G. Szamel, Influence of topological constraints on the statics and dynamics of ring polymers, Phys. Rev. E 63, 052801 (2001).
  • [42] A. Vettorel, A.Y. Grossberg and K. Kremer, Statistics of polymer rings in the melt: a numerical simulation study, Phys. Biol. 6, 025013 (2009).
  • [43] G. Tsolou, N. Stratikis, C. Baig, P.S. Stephanou and V.G. Mavrantzas, Melt Structure and Dynamics of Unentangled Polyethylene Rings: Rouse Theory, Atomistic Molecular Dynamics Simulation, and Comparison with the Linear Analogues, Macromolecules 43, 10692-10713 (2010).
  • [44] J. Suzuki, A. Takano, T. Deguchi and Y. Matsushita, Dimension of ring polymers in bulk studied by Monte-Carlo simulation and self-consistent theory, J. Chem. Phys. 131, 144902 (2009).
  • [45] T. Pakula and K. Jeszka, Simulation of Single Complex Macromolecules. 1. Structure and Dynamics of Catenanes, Macromolecules 32, 6821-6830 (1999).
  • [46] J. Reiter, Monte Carlo study of diffusion of an ideal ring polymer in a network of obstacles on a cubic and a square lattice, J. Chem. Phys. 95, 1290-1294 (1991).
  • [47] D. Gersappe and M. Olvera de la Cruz, A Monte Carlo Study of Ring Polymers in Disordered Systems, Mol. Simulat. 13, 267-283 (1994).
  • [48] B.V.S. Iyer, A.K. Lele, V.A. Juvekar and R.A. Mashelkar, Self-Similar Dynamics of a Flexible Ring Polymer in a Fixed Obstacle Environment: A Coarse-Grained Molecular Model, Ind. Eng. Chem. Res. 48, 9514-9522 (2009).
  • [49] J. Skolnick and A. Kolinski, Dynamics of Dense Polymer Systems: Computer Simulations and Analytic Theories, Adv. Chem. Phys. 77, 223-278 (1990).
  • [50] A. Kolinski, M. Vieth i A. Sikorski, ´ Collapse of Semiflexible Polymers in Two Dimensions. Monte Carlo Simulations, Acta Phys. Polon. A 79, 601-612 (1991).
  • [51] K. Binder, M. Müller, J. Baschnagel, Polymer Models on the Lattice, in: M. Kotelyanskii, D.N. Theodorou (eds.) Simulation Methods for Polymers, Marcel Dekker, NewYorkBasel, p. 125-146, 2004.
  • [52] A. Takano, Y. Ohta, K. Masuoka, K. Matsubara, T. Nakano,A. Hieno, M. Itakura, K. Takahashi, S. Kinugasa, D. Kawaguchi, Y. Takahashi, Y. Matsushita, Radii of gyrationof ring-shaped polystyrenes with high purity in dilute solutions, Macromolecules 45, 369-373 (2012).
  • [53] A.Y. Grosberg, Critical Exponents for Random Knots, Phys. Rev. Lett. 85, 3858-3861 (2000).
  • [54] A. Dobay, J. Dubochet, K. Millett, P.-E. Sottas, A. Stasiak, Scaling behavior of random knots, Proc. Natl. Acad. Sci. U.S.A. 100, 5611-5615 (2003).
  • [55] A. Kolinski, J. Skolnick, R. Yaris, Monte Carlo studies on the long time dynamic properties of dense cubic lattice multichain systems. I. The homopolymeric melt, J. Chem. Phys. 86, 7164-7173 (1987).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9e6e652-5401-4d22-8a36-1e015879dad4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.