
 57 Scientific Journals 39(111)

Scientific Journals Zeszyty Naukowe
Maritime University of Szczecin Akademia Morska w Szczecinie

2014, 39(111) pp. 57–62 2014, 39(111) s. 57–62
ISSN 1733-8670

Bi-directional search in route planning in navigation

Mariusz Dramski

Maritime University of Szczecin
70-500 Szczecin, ul. Wały Chrobrego 1–2, e-mail: m.dramski@am.szczecin.pl

Key words: shortest path, safe route, restricted area, bi-directional search, Dijkstra algorithm

Abstract
The shortest path problem is one of the most significant ones in the field of maritime navigation. One of

the most efficient algorithms was proposed by E. Dijkstra in 1959. Taking into account the development of

computer technology was offered another interesting approach to the issue. The main idea is to execute the

shortest path algorithm simultaneously forward from the source and backward from the target. The results are

presented and discussed.

Introduction

The use of shortest path algorithms in navigation

comes down to design a graph of possible paths

and place it on the map. After graph’s obtaining

there is a possibility to find the shortest path

between all nodes. The nodes represent the point or

area on the map. In this paper we will discuss only

the classical approach to find a solution for this

problem.

The quality of solution is assessed on the basis

of two main factors:

• ability to find an optimal path;

• computational complexity.

We consider undirected graph G = (V, E) with n

nodes and m edges each, with nonnegative edge

w(u,

v). The problem is to find the shortest path

between the source s and target t. In this case it will

be the sum of weights of all edges which create the

shortest path and is given by d(s, t).

In navigation the weights of graph’s edges are

constant, because they represent the geometric dis-

tances between the nodes placed on the map. So, it

is possible to precompute and store shortest paths

between all the nodes.

There are several classical approaches to solve

the problem of the shortest path in the graph:

• Dijkstra’s algorithm;

• priority queues;

• bi-directional search;

• geometric goal directed search (A
*
).

Due to the fact that this article describes a bi-

-directional search using Dijkstra’s algorithm, we

will focus only on those methods. The other ones

are described e.g. in [1] or [2].

Dijkstra algorithm

In 1959 [3] E. Dijkstra proposed an algorithm,

which is currently one of the most popular solutions

of the shortest path in the graph of problem.

Dijkstra’s algorithm finds the path with the lowest

cost between a start vertex and every other vertex in

the graph. This algorithm is often used in network

routing protocols and many other problems where

graphs can be applied.

The main steps of Dijkstra’s algorithm:

• Let s be the start node, w(i,

j) is the weight of

edge i, j;

• Create a distance matrix d for all the vertices of

graph, assuming d(s) = 0 and d(v) =  if there is

no edge;

• Create a priority queue Q where the priority is

a distance from the start node s;

• Repeat until Q is not empty:

– remove from the queue the vertex u with the

lowest priority;

– for each neighbour v of the vertex u,

d(v) = min

(d(u) + w(u,v), d(v));

Mariusz Dramski

 58 Scientific Journals 39(111)

• The last row of matrix d is a vector containing

the shortest distance values from s to all the ver-

tices of graph.

The computational complexity of this algorithm

is O(n
2
), but can be reduced to O(n

logn) using

priority queues [1].

Of course, there are other solutions of the short-

est path problem such Floyd algorithm, Bellman-

Ford algorithm etc. The comparison between them

is described in [2].

Figure 1 illustrates the Dijkstra’s algorithm re-

sults for an example graph consisting of 9 nodes

and 11 edges between them. On each edge there is a

number telling the weight of the edge. As it can be

observed in these two simple experiments, the

shortest path search is done forward from the

source (node 1) to the target point (8 and 9 respec-

tively). This is a normal behavior of this method

according to it’s foundation.

Bi-directional search

New processors consist of multiple central pro-

cessor units which read and execute program in-

structions. They are called multi-core processors

and were developed in early 2000s by Intel, AMD

and others. The invention of this technology lets to

execute programs in parallel. Of course, earlier

there was a possibility to parallel processing but it

required some special machines which not always

were available for researchers.

Dewelopment of hardware is very fast. New sys-

tems are available every year, are more reliable,

faster and cheaper.

Due to the fact above (and other not mentioned

ones) conducts to the possibility of acceleration of

the data processing.

The bi-directional search was proposed initially

in [4]. In our case it lies in the fact that Dijkstra’s

algorithm will be executed simultaneously forward

from the source and backward from the target. In

this way the shortest path can be derived from the

information already gathered. This technique lets to

accelerate the calculations.

Figure 2 illustrates the same graph as in figure 1.

This time bi-directional search applied using

Dijkstra’s algorithm. As it can be observed the

search was started independently from the start

point and the target one. In both cases the search

stopped in the middle of path. Due to the fact that,

Dijkstra’s algorithm has the optimality guarantee

and the graph is static, the search will always be

stopped in the same point. So, there is no difference

in final effect. However, by launching two inde-

pendent threads can do the same task more quickly.

Figure 3 illustrates the basic diagram of the bi-

-directional search algorithm.

Fig. 1. Illustration of algorithm Dijkstra, A) Graph, B) Path 1–8, C) Path 1–9

Bi-directional search in route planning in navigation

Zeszyty Naukowe 39(111) 59

Restricted area

One of the basic tasks of navigators is to con-

duct the ship safely from the point of departure to

destination. The performance of such task, among

other issues, calls for taking into account move-

ments of other objects (ships) in the area (Collision

Regulations), restrictions of the area itself, (shape

of the shoreline, available depths, other obstruc-

tions) or the dynamics of own ship. In [5], it is

estimated that about 80% of marine collisions are

results from human error.

Navigation in the restricted area is very difficult.

An increasing number of devices supporting navi-

gator’s work leads to such excess of information

that it hampers taking the right decisions aimed at

the ship’s safety.

An example of restricted area illustrated in fig-

ure 4.

Fig. 2. Illustration of algorithm Dijkstra – bi-directional search, A) Graph, B) Path 1–8, C) Path 1–9

Fig. 3. The bi-directional search algorithm

Mariusz Dramski

 60 Scientific Journals 39(111)

Fig. 4. An example of restricted area

Creating a graph of possible paths

Figure 5 illustrates suggestion of graph of possi-

ble paths. Each node represents a point in the area

which is coordinates. Each edge is a possible way

between the nodes. The graph can be obtained in

many different ways such Delaunay’s triangulation,

Voronoi polygons etc. Anyway, in this paper, we

do not discuss about creating graph which can be

e.g. [6]. Figures 6 and 7 present the shortes path

found by bi-directional search from node 1 to 38

and 1 to 32. There is no need to show the results of

Fig. 5. Restricted area with a graph of possible paths

Fig. 6. Restricted area with path 1–38 found by bi-directional search

Bi-directional search in route planning in navigation

Zeszyty Naukowe 39(111) 61

single use of Dijkstra’s algorithm, because the path

will be the same.

The arrows in the above illustrations show, how

to implement the shortest path search which was

done forward from the node 1 and backward from

the nodes 32 and 38. As it can be seen, both algo-

rithms created paths which met in the middle of

possible route. At the figure 6 it was node 24 and at

the figure 7 node 20.

Due to the fact, that in both cases the found path

was the same as in single use of Dijkstra algorithm,

there is a need to ask a question about the benefits

of bi-directional search. In real life the graphs de-

signed have a very big number of nodes, so the time

of the search would be significantly long. Although

maritime navigation there is a spare of time (in

most cases), the computational complecity is still

very important. Decision support systems must

provide the information in the shortest time possi-

ble. Bi-directional search lets to use multi-threading

or even multi-core processing. This is an obvious

form of make this time shorter.

Unfinite graph experiment

For the purpose of experimental verification of

bi-directional search few fragments of infinite

graphs were created. The kind of this graph is

shown at figure 8. Every vertex of these fragments

has 8 edges (sides of the squares and it’s diagonals

– except external vertices). The bottom left node

(number 1) of every fragment is a start node for

shortest path routing algorithm and the top right

one (number n) is the stop node. So, it’s easy to

observe that the shortest path will always be the

diagonal of a square.

Fig. 8. An example of infinite graph

Figure 9 illustrates a comparison between times

of the execution of each approach. When the small

number of nodes was considered, the average time

was shorter for the classical Dijkstra algorithm.

Increasing the number of nodes, the difference in

favor of bi-directional search was observed. This

the normal situation, caused in the case of parallel

processing. If the number of calculations is low,

there is no need to do it in parallel. Only the crea-

tion of threads requires some time.

Fig. 7. Restricted area with path 1–32 found by bi-directional search

Mariusz Dramski

 62 Scientific Journals 39(111)

Fig. 9. Comparison of Dijkstra algorithm and bi-directional

search

Conclusions

It has been proven that the bi-directional search

has some advantages compared to the traditional

approach of such a Dijkstra algorithm. Experiments

carried out shown that the difference in average

time of execution decreases, depending on the

complexity of graph considered. It is reasonable to

conduct further research to find a more optimal

solution. The response of the decision support sys-

tem (which may include the proposed methodolo-

gy) is very important in the determined time period.

It is necessary, of course, to carry out more experi-

ments, especially basing on real maritime maps.

References

1. DELLING D., SANDERS P., SCHULTES D., WAGNER D.: Engi-

neering Route Planning Algorithms. Algorithmics of Large

and Complex Networks, Springer, 2009.

2. DRAMSKI M.: Shortest path problem in static navigation

situations. Metody Informatyki Stosowanej 5, 2011.

3. DIJKSTRA E.W.: A note on two problems in connexion with

graphs. Numerische Mathematik 1, 1959, 269–271.

4. POHL I.: Bi-directional Search. In Meltzer Bernard; Michie

Donald, Machine Intelligence 6, Edinburgh University

Press, 1971, 127–140.

5. LI L.N., YANG S.H., CAO B.G., LI Z.F.: A summary of stud-

ies on the automation of ship collision avoidance intelli-

gence. Journal of Jimei University, China, Vol. 11, No. 2,

2006, 188–192.

6. DRAMSKI M., MĄKA M.: Algorithm of Solving Collision

Problem of Two Objects in Restricted Area. Communica-

tions in Computer and Information Science 395, Springer

2013, 251–257.

Other

7. LIPSKI W.: Kombinatoryka dla programistów. WNT, 2007.

4 9 16 25 36 49 64

Dijkstra 0.016 0.017 0.008 0.014 0.024 0.035 0.044

Bidirectional search 0.019 0.019 0.008 0.012 0.015 0.019 0.023

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
A

v
er

ag
e

ti
m

e
o

f
ex

ec
u

ti
o

n

Number of nodes

Dijkstra Bidirectional search Bi-directional search

Bi-directional search

