PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of an Element-free Galerkin Method to Water Wave Propagation Problems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is concerned with the problem of gravitational wave propagation in water of variable depth. The problem is solved numerically by applying an element-free Galerkin method. First, the proposed model is validated by comparing its predictions with experimental data for the plane flow in water of uniform depth. Then, as illustrations, results of numerical simulations performed for plane gravity waves propagating through a region with a sloping bed are presented. These results show the evolution of the free-surface elevation, displaying progressive steepening of the wave over the sloping bed, followed by its attenuation in a region of uniform depth. In addition, some of the results of the present model are compared with those obtained earlier by using the conventional finite element method.
Twórcy
  • Institute of Hydro-Engineering, Polish Academy of Sciences, ul. Koscierska 7, 80-328 Gdansk, Poland
Bibliografia
  • Antoci C., Gallati M. and Sibilla S. (2007) Numerical simulation of fluid–structure interaction by SPH, Comput. Struct., 85 (11–14), 879–890, DOI: 10.1016/j.compstruc.2007.01.002.
  • Belytschko T., Krongauz Y., Dolbow J. and Gerlach C. (1998) On the completeness of meshfree particle methods, Inter. J. Numer. Meth. Eng., 43 (5), 785–819, DOI: 10.1002/(SICI)1097-0207(19981115)43:5.
  • Belytschko T., Krongauz Y., Organ D., Fleming M. and Krysl P. (1996) Meshless methods: An overview and recent developments, Comput. Meth. Appl. Mech. Eng., 139 (1–4), 3–47.
  • Belytschko T., Lu Y. Y. and Gu L. (1995) Crack propagation by element-free Galerkin methods, Eng. Fracture Mech., 51 (2), 295–315.
  • Chadwick P. (1999) Continuum Mechanics: Concise Theory and Problems, Dover, Mineola, New York, 2nd edn.
  • Dalrymple R. A. and Rogers B. D. (2006) Numerical modeling of water waves with the SPH method, Coastal Eng., 53 (2–3), 141–147, DOI: 10.1016/j.coastaleng.2005.10.004.
  • Dingemans M. W. (1997) Water Wave Propagation over Uneven Bottoms, World Scientific, Singapore.
  • Dolbow J. and Belytschko T. (1999) Numerical integration of the Galerkin weak form in meshfree methods, Comput. Mech., 23 (3), 219–230.
  • Gingold R. A. and Monaghan J. J. (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 375–389.
  • Gómez-Gesteira M., Cerqueiro D., Crespo C. and Dalrymple R. A. (2005) Green water overtopping analyzed with a SPH method, Ocean Eng., 32 (2), 223–238, DOI: 10.1016/j.oceaneng.2004.08.003.
  • Li S. and Liu W. K. (2004) Meshfree Particle Methods, Springer, Berlin.
  • Liu G. R. and Liu M. B. (2003) Smoothed Particle Hydrodynamics: A Meshfree Particle Method,World Scientific, Singapore.
  • Lo E. Y. M. and Shao S. (2002) Simulation of near-shore solitary wave mechanics by an incompressible SPH method, Appl. Ocean Res., 24 (5), 275–286, DOI: 10.1016/S0141-1187(03)00002-6.
  • Löhner R., Sacco C., Oňate E. and Idelsohn S. (2002) A finite point method for compressible flow, Int. J. Numer. Meth. Eng., 53 (8), 1765–1779.
  • Lucy L. B. (1977) A numerical approach to the testing of the fission hypothesis, Astron. J., 82 (12), 1013–1024.
  • Melenk J. M. and Babuška I. (1996) The partition of unity finite element method: Basic theory and applications, Comput. Meth. Appl. Mech. Eng., 139 (1–4), 289–314.
  • Monaghan J. J. (1992) Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys., 30, 543–574, DOI: 10.1146/annurev.aa.30.090192.002551.
  • Nayroles B., Touzot G. and Villon P. (1992) Generalizing the finite element method: diffuse approximation and diffuse elements, Comput. Mech., 10 (5), 307–318.
  • Oňate E., Idelsohn S. R., Zienkiewicz O. C. and Taylor R. L. (1996a) A finite point method in computational mechanics. Applications to convective transport and fluid flow, Int. J. Numer. Meth. Eng., 39 (22), 3839–3866.
  • O˜nate E., Idelsohn S. R., Zienkiewicz O. C., Taylor R. L. and Sacco C. (1996b) A stabilized finite point method for analysis of fluid mechanics problems, Comput. Meth. Appl. Mech. Eng., 139 (1–4), 315–346.
  • Ortega E., Oňate E. and Idelsohn S. (2007) An improved finite point method for tridimensional potential flows, Comput. Mech., 40 (6), 949–963.
  • Staroszczyk R. (2009) A Lagrangian finite element analysis of gravity waves in water of variable depth, Arch. Hydro-Eng. Environ. Mech., 56 (1–2), 43–61.
  • Stoker J. J. (1957) WaterWaves. The Mathematical Theory with Applications, Inter-Science, New York.
  • Szmidt K. and Hedzielski B. (2007) On the transformation of long gravitational waves in a region of variable water depth: a comparison of theory and experiment, Arch. Hydro-Eng. Environ. Mech., 54 (2), 137–158.
  • Wehausen J. V. and Laitone E. V. (1960) Surface waves. In: Encyclopedia of Physics (ed. S. Flügge), vol. IX, Springer, Berlin, 446–778.
  • Wendland H. (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math., 4 (1), 389–396.
  • Zienkiewicz O. C. and Taylor R. L. (2000) The Finite Element Method. The Basis, vol. 1. Butterworth-Heinemann, Oxford, 5th edn.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9dbc85d-872e-4f0d-98e4-3372e5fbfff2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.