PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of PCB-contaminated soil pretreatment remediation by hydroxypropyl-β-cyclodextrin (HP-β-CD)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study thoroughly evaluated the eff ect of hydroxypropyl-β-cyclodextrin (HP-β-CD) on eluting of Aroclor1242 (one kind of PCBs (polychlorinated biphenyls)) from contaminated soil. The factors that might aff ect eluting effi ciency including HP-β-CD concentration, contact time, eluting cycles, temperature, pH, salt content, humic acid, and ultrasonic were all tested to evaluate the PCBs eluting effi ciency by HP-β-CD. Results indicated that Aroclor1242 can be eluted eff ectively from soil by HP-β-CD solution, 81% of Aroclor1242 was eluted from soil by 50 g/L of HP-β-CD solution after three cycles eluting, and the eluting effi ciency was improved by increasing temperature and with ultrasonic. Furthermore, it was shown that the humic acid and extreme acidic/alkaline condition both decreased the eluting effi ciency. In addition, column eluting experiment was conducted to simulate the practical HP-β-CD eluting of Aroclor1242 from contaminated soil, 18% of the PCBs was eluted from the soil column by 10 g/L of HP-β-CD. Overall, the results indicated the high extract power of HP-β-CD toward PCBs polluted soil and potential use of HP-β-CD for in situ remediation of PCBs contaminated soils.
Rocznik
Strony
53--61
Opis fizyczny
Bibliogr. 38 poz., rys., tab. wykr.
Twórcy
autor
  • Suzhou University of Science and Technology, China
autor
  • Beijing Technology and Business University, China
autor
  • Suzhou University of Science and Technology, China
autor
  • Suzhou University of Science and Technology, China
Bibliografia
  • 1. Billingsley, K.A., Wilson, S., Singh, A., Ward, O.P. & Backus, S.M. (2002). Remediation of PCBs in soil by surfactant washing and biodegradation in the wash by pseudomonas, sp. LB400. Biotechnology Letters, 24, 21, pp. 1827-1832, DOI: 10.1023/a:1020698229326.
  • 2. Burke, J., Mckinney, J., Trotter, W., Firestone, D. & Pomerantz, I. (1978). Chemistry of PCBs and PBBs. Environmental Health Perspect, 24, pp. 133-146, DOI: 10.1289/ehp.7824133.
  • 3. Brusseau, M.L., Wang, X. & Hu, Q. (1994). Enhanced transport of low-polarity organic compounds through soil by cyclodextrin. Environmental Science and Technology, 28, 5, pp. 952-956, DOI: 10.1021/es00054a030.
  • 4. Cserháti, T., Forgács, E. & Oros, G. (2002). Biological activity and environmental impact of anionic surfactants. Environment International, 28, 5, pp. 337-348, DOI: 10.1016/s0160-4120(02)00032-6.
  • 5. Fava, F. & Ciccotosto, V.F. (2002). Effects of randomly methylated-β-cyclodextrins (rameb) on the bioavailability and aerobic biodegradation of polychlorinated biphenyls in three pristine soils spiked with a transformer oil. Applied Microbiology and Biotechnology, 58, 3, pp. 393-399, DOI: 10.1007/s00253-001-0882-7.
  • 6. Fava, F. (2015). Cyclodextrin effects on the ex‐situ bioremediation of a chronically polychlorobiphenyl‐contaminated soil. Biotechnology and Bioengineering, 58, 4, pp. 345-355, DOI: 10.1002/(SICI)1097-0290(19980520)58:4<345::AID-BIT1>3.0.CO;2-J.
  • 7. Fenyvesi, É., Balogh, K., Oláh. E., Bátai. B., Varga, E. & Molnár, M. (2011). Cyclodextrins for remediation of soils contaminated with chlorinated organics. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 70, 3-4, pp. 291-297, DOI: 10.1007/s10847-010-9839-8.
  • 8. Fenyvesi, É., Molnár, M., Leitgib, L. & Gruiz, K. (2015). Cyclodextrin-enhanced soil-remediation technologies. Land Contamination and Reclamation, 17, 3, pp. 585-597, DOI: 10.2462/09670513.961.
  • 9. Fenyvesi, É., Szemán, J. & Szejtli, J. (1996). Extraction of PAHs and pesticides from contaminated soils with aqueous cd solutions. Journal of Inclusion Phenomena, 25, 1, pp. 229-232, DOI: 10.1007/BF01041575.
  • 10. Fijałkowski, K., Rosikoń, K., Grobelak, A. & Kacprzak, M. (2011). Migration of various chemical compounds in soil solution during inducted phytoremediation. Archives of Environmental Protection, 37, 4, pp. 49-59.
  • 11. Frame, G.M., Wagner, R.E., Carnahan, J.C., Brown, J.F., May, R.J. & Smullen, L.A. (1996). Comprehensive, quantitative, congener--specific analyses of eight aroclors and complete P congener assignments on db-1 capillary gc columns. Chemosphere, 33, 4, pp. 0-623, DOI: 10.1016/0045-6535(96)00214-7.
  • 12. Gould, S. & Scott, R.C. (2005). 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): A toxicology review. Food and Chemical Toxicology, 43, 10, pp. 1451-1459, DOI:10.1016/j.fct.2005.03.007.
  • 13. Hanna, K., Chiron, S. & Oturan, M.A. (2005). Coupling enhanced water solubilization with cyclodextrin to indirect electrochemical treatment for pentachlorophenol contaminated soil remediation. Water Research, 39, 12, pp. 0-2773, DOI: 10.1016/j.watres.2005.04.057.
  • 14. Hutzinger, O. (1974). The Chemistry of PCBs, CRC press, pp. 119-130.
  • 15. Jiradecha, C. (2000). Removal of naphthalene and 2, 4-dinitrotoluene from soils by using carboxymethyl-β-cyclodextrin. Kasetsart Journal Natural Sciences, pp. 171-178.
  • 16. Kimbrough, R.D., Krouskas, C.A., Carson, M.L., Long, T.F., Bevan, C. & Tardiff, R.G. (2010). Human uptake of persistent chemicals from contaminated soil: pcdd/fs and pcbs. Regulatory Toxicology and Pharmacology Rtp, 57, 1, pp. 43-54, DOI: 10.1016/j.yrtph.2009.12.005.
  • 17. Leitgib, L., Gruiz, K., Fenyvesi, É., Balogh, G. & Murányi, A. (2008). Development of an innovative soil remediation: “Cyclodextrin-enhanced combined technology”. Science of the Total Environment, 392, 1, pp. 12-21, DOI: 10.1016/j.scitotenv.2007.10.055.
  • 18. Liu, H. & Gen, J. (2017). Influencing factors on aroclor1242 contaminated soil remediation using hydroxypropyl-β--cyclodextrin (HPCD). Journal of Hebei Geo University, 5, pp. 20-24, DOI: 10.1007/s11270-015-2472-9.
  • 19. Liu, H., Shi, Z., Sun, Q. & Gao, N. (2008). Promotion of HP-β-CD on washing of Aroclor1242 from soil. International Conference on Bioinformatics & Biomedical Engineering. IEEE, pp. 4121-4124, DOI: 10.1109/ICBBE.2008.531.
  • 20. Loftsson, T., Matthı́Asson, K. & Másson, M. (2003). The effects of organic salts on the cyclodextrin solubilization of drugs. International Journal of Pharmaceutics (Kidlington), 262, 1-2, pp. 101-107, DIO: 10.1016/s0378-5173(03)00334-x.
  • 21. Macherzyński, B., Włodarczyk-Makuła, M. & Nowacka, A. (2012). Simplification of the procedure of preparing samples for PAHs and PCBs determination/uproszczenie procedury przygotowania próbek do oznaczania wwa I PCB. Archives of Environmental Protection, 38, 4, pp. 23-33, DOI: 10.2478/v10265-012-0037-1.
  • 22. Mackay, D.M., Shiu, W.Y. & Ma, K.C. (1997). Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals, CRC press, 1997.
  • 23. Mackay, D.M., Wanying, S. & Ma, K.C. (2006). Handbook of physical-chemical properties and environmental fate for organic chemicals. Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals, CRC press, 2006.
  • 24. Mccray, J.E., Boving, T.B. & Brusseau, M.L. (2010). Cyclodextrin enhanced solubilization of organic contaminants with implications for aquifer remediation. Ground Water Monitoring and Remediation, 20, 1, pp. 94-103, DOI:10.1111/j.1745-6592.2000.tb00256.x.
  • 25. Mccray, J.E. & Brusseau, M.L. (2015). Cyclodextrin-enhanced in situ flushing of multiple-component immiscible organic liquid contamination at the field scale: analysis of dissolution behavior. Environmental Science and Technology, 33, 1, pp. 89-95, DOI: 10.1021/es980117b.
  • 26. Molnár, M., Leitgib, L., Fenyvesi, É. & Gruiz, K. (2009). Development of cyclodextrin-enhanced soil remediation: from the laboratory to the field. Land Contamination and Reclamation, 17, 17, pp. 599-610, DOI: 10.2462/09670513.976.
  • 27. Palmer, C.D. & Fish, W. (1992). Chemical Enhancements to pumpand-treat remediation, Ground Water Issue, 1, 1, pp. 1-19, DOI: 10.1201/9780203756720-5.
  • 28. Peng, W., Fang, Z.D., Qiao, H., Hao, Q.L., Zhang, K. & Yu, H.B. (2014). A review on remediation technologies of pcbs from the contaminated soils or sediments. Advanced Materials Research, 955, pp. 2238-2242, DOI: 10.4028/www.scientific.net/AMR.955-959.2238.
  • 29. Rosińska, A. & Dąbrowska, L. (2011). PCBs and heavy metals in water and bottom sediments of the Kozłowa Góra dam reservoir. Archives of Environmental Protection, 37, 4, pp. 61-73.
  • 30. Sawhney, B.L. (1988). Cheminform abstract: chemistry and properties of PCBs in relation to environmental effects. ChemInform, 19, 23, DOI:10.1002/chin.198823372.
  • 31. Szymański, K. & Janowska, B. (2016). Migration of pollutants in porous soil environment. Archives of Environmental Protection, 42, 3, pp. 87-95, DOI:10.1515/aep-2016-0026.
  • 32. Tajik, R., Mohabadi, H.A., Khavanin, A., Jafari, A.J. & Eshrati, B. (2014). The effect of solvent, hydrogen peroxide and dioxide titanium on degradation of PCBs, using microwave radiation in order to reduce occupational exposure. Archives of Environmental Protection, 40, 2, pp. 91-102, DOI: 10.2478/aep-2014-0018.
  • 33. Tong, L.H. (2001). Cyclodextrin chemistry-basis and application. Beijing: Scienc Publish, pp. 10-247. (in Chinese).
  • 34. Truex, M., Johnson, C., Macbeth, T., Becker, D., Lynch, K. & Giaudrone, D. (2017). Performance assessment of pump-and--treat systems. Groundwater Monitoring and Remediation, 37, 3, pp. 28-44, DOI: 10.1111/gwmr.12218.
  • 35. Wang, X. & Brusseau, M.L. (1993). Solubilization of some low-polarity organic compounds by hydroxypropyl-.beta.-cyclodextrin. Environmental Science and Technology, 27, 13, pp. 2821-2825, DIO: 10.1021/es00049a023.
  • 36. West, C.C. (1992). Surfactants and subsurface remediation. Environmental Science and Technology, 26, 12, pp. 2324-2330, DIO: 10.1021/es00036a002.
  • 37. Zheng, H.L., Chen, J. & Deng, W.J. (2004). “Remediation technologies of PCBs in soil environment,” Soils, 36, 1 , pp. 16-20.
  • 38. Zhou, S., Latorre, K.A., Ghosh, M.M., Layton, A.C., Luna, S.H. & Bowles, L. (1998). Biodegradation of uv-irradiated polychlorinated biphenyls in surfactant micelles. Water Science and Technology, 38, 7, pp. 25-32, DOI: 10.1016/s0273-1223(98)00603-9
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9d0479f-3dc2-4f92-870b-0633e0548a59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.