PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Biobased poly(3-hydroxybutyrate acid) composites with addition of aliphatic polyurethane based on polypropylene glycols

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Poly(3-hydroxybutyrate) (P3HB) is the most important of the polyhydroxyalkanoates. It is biosynthesized, biodegradable, biocompatible, and shows no cytotoxicity and mutagenicity. P3HB is a natural metabolite in the human body and, therefore, it could replace the synthetic, hard-to-degrade polymers used in the production of implants. However, P3HB is a brittle material with limited thermal stability. Therefore, in order to improve its mechanical properties and processing parameters by separating its melting point and degradation temperature, P3HB-based composites can be produced using, for example, linear aliphatic polyurethanes as modifiers. The aim of the study is a modification of P3HB properties with the use of linear aliphatic polyurethanes synthesized in reaction of hexamethylene diisocyanate (HDI) and polypropylene glycols (PPG) by producing their composites. Prepared biocomposites were tested by the scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetry (TGA). Furthermore, selected mechanical properties were evaluated. It has been confirmed that new biocomposites showed an increase in impact strength, relative strain at break, decrease of hardness and higher degradation temperature compared to the unfilled P3HB. The biocomposites also showed a decrease in the glass transition temperature and the degree of crystallinity. Biocomposites obtained with 10 wt.% polyurethane synthesized with polypropylene glycol having 1000 g · mole–1 and HDI have the best thermal and mechanical properties.
Rocznik
Strony
75--89
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • Faculty of Chemistry, Rzeszow University of Technology, Rzeszów, Poland.
  • Department of Experimental and Clinical Pharmacology, Medical College of Rzeszów University, The University of Rzeszów, Rzeszów, Poland.
  • Interdyscyplinary Center Preclinical and Clinical Research, The University of Rzeszów, Rzeszów, Poland.
  • Faculty of Chemistry, Rzeszow University of Technology, Rzeszów, Poland.
  • Faculty of Chemistry, Rzeszow University of Technology, Rzeszów, Poland.
  • Faculty of Chemistry, Rzeszow University of Technology, Rzeszów, Poland.
  • Faculty of Chemical Engineering and Commodity Science, University of Technology and Humanities, Radom, Poland.
  • Faculty of Chemical Engineering and Commodity Science, University of Technology and Humanities, Radom, Poland.
Bibliografia
  • [1] ALVAREZ-SANTULLANO N., VILLEGAS P., MARDONES M.S., DURÁN R.E., DONOSO R., GONZÁLEZ A., SANHUEZA C., NAVIA R., ACEVEDO F., PÉREZ-PANTOJA D., SEEGER M., Genome-Wide Metabolic Reconstruction of the Synthesis of Polyhydroxyalkanoates from Sugars and Fatty Acids by Burkholderia Sensu Lato Species, Microorganisms, 2021, 9, 1290.
  • [2] ANGELL C.A., Relaxation in liquids, polymers and plastic crystals – strong/fragile patterns and problems, J. Non-Cryst. Solids, 1991, 131–133, 13–31.
  • [3] ASHRAFI M., GHASEMI A.R., HAMADANIAN M., Optimization of thermo-mechanical and antibacterial properties of epoxy/polyethylene glycol/MWCNTs nano-composites using response surface methodology and investigation thermal cycling fatigue, Polym. Test., 2019, 78, 105946.
  • [4] BALART R., GARCIA-GARCIA D., FOMBUENA V., QUILES-CARRILLO L., ARRIETA M.P., Biopolymers from Natural Resources, Polymers, 2021, 13, 2532.
  • [5] BÖHMER R., NGAI K.L., ANGELL C.A., PLAZEK D.J., Nonexponential relaxations in strong and fragile glass formers, J. Chem. Phys., 1993, 99, 4201–4209.
  • [6] CZERNIECKA-KUBICKA A., ZARZYKA I., PYDA M., Advanced analysis of poly(3-hydroxybutyrate) phases based on vibrational heat capacity, J. Therm. Anal. Calorim., 2017, 127, 905–914.
  • [7] CZERNIECKA-KUBICKA A., ZIELECKI W., FRĄCZ W., JANUS-KUBIAK M., KUBISZ L., PYDA M., Vibrational heat capacity of the linear 6,4-polyurethane, Thermochim. Acta, 2020, 683, 178433.
  • [8] D20 Committee, Specification for Labeling of Plastics Designed to be Aerobically Composted in Municipal or Industrial Facilities.
  • [9] European Bioplastics, Bioplastics facts and figures. https://docs.european-bioplastics.org/publications/EUBP_Facts_and_figures.pdf, Accessed: April 30, 2018.
  • [10] FERRONATO N., TORRETTA V., Waste Mismanagement in Developing Countries: A Review of Global Issues, Int. J. Environ. Res. Public. Health, 2019, 16, 1060.
  • [11] KAUSHAL A., BANSAL A., Thermodynamic behavior of glassy state of structurally related compounds, Eur. J. Pharm. Biopharm., 2008, 69, 1067–1076.
  • [12] KETTL K.-H., TITZ M., KOLLER M., SHAHZAD K., SCHNITZER H., NARODOSLAWSKY M., Process design and evaluation of biobased polyhydroxyalkanoates (PHA) production, Chem. Eng. Trans., 2011, 25, 983–988.
  • [13] KUMAR V., DARNAL S., KUMAR S., KUMAR S., SINGH D., Bioprocess for co-production of polyhydroxybutyrate and violacein using Himalayan bacterium Iodobacter sp. PCH194, Bioresour. Technol., 2021, 319, 124235.
  • [14] MACHADO G., SANTOS F., LOUREGA R., MATTIA J., FARIA D., EICHLER P., AULER A., Biopolymers from Lignocellulosic Biomass: Feedstocks, Production Processes, and Applications, Lignocellulosic Biorefining Technol., 2020, 125–158.
  • [15] MITURA S., SIONKOWSKA A., JAISWAL A., Biopolymers for hydrogels in cosmetics: review, J. Mater. Sci. Mater. Med., 2020, 31, 50.
  • [16] PRZYBYŁEK M., BIAŁKOWSKA A., BAKAR M., KOSIKOWSKA U., SZYMBORSKI T., Effect of aging conditions on the mechanical properties and antimicrobial activity of elastomer nanocomposites, J. Polym. Eng., 2019, 39, 316–325.
  • [17] SLADE L., LEVINE H., Glass Transitions and Water-Food Structure Interactions, Advances in Food and Nutrition Research, 1995, 38, 103–269.
  • [18] SZEWCZENKO J., KAJZER W., KAJZER A., BASIAGA M., KACZMAREK M., ANTONOWICZ M., NOWIŃSKA K., JAWORSKA J., JELONEK K., KASPERCZYK J., Biodegradable polymer coatings on Ti6Al7Nb alloy, Acta Bioeng. Biomech., 2019, 21, 83–92.
  • [19] VOLOVA T., KISELEV E., NEMTSEV I., LUKYANENKO А., SUKOVATYI A., KUZMIN A., RYLTSEVA G., SHISHATSKAYA E., Properties of degradable polyhydroxyalkanoates with different monomer compositions, Int. J. Biol. Macromol., 2021, 182, 98–114.
  • [20] World Health Organization, WHO calls for more research into microplastics and a crackdown on plastic pollution, https://www.who.int/news/item/22-08-2019-who-calls-for-more-research-into-microplastics-and-a-crackdown-on-plastic-pollution, Accessed: September 15, 2021.
  • [21] WOŹNA A.E., JUNKA A., HOPPE V.W., Influence of the different composites (PLA/PLLA/HA/β-TCP) contents manufactured with the use of additive laser technology on the biocompatibility, Acta Bioeng. Biomech., 2021, 23, 169–180.
  • [22] WUNDERLICH B., Thermal analysis of polymeric materials, Springer, Berlin 2005.
  • [23] ZARZYKA I., CZERNIECKA-KUBICKA A., HĘCLIK K., DOBROWOLSKI L., PYDA M., LEŚ K., WALCZAK M., BIAŁKOWSKA A., BAKAR M., Thermally stable biopolimer composites based on poly(3-hydroxybutyrate) modified with linear aliphatic polyurethanes – preparation and properties, Acta Bioeng. Biomech., 2021, 23.
  • [24] ZHOU D., ZHANG G.G.Z., LAW D., GRANT D.J.W., SCHMITT E.A., Physical Stability of Amorphous Pharmaceuticals: Importance of Configurational Thermodynamic Quantities and Molecular Mobility, J. Pharm. Sci., 2002, 91, 1863–1872.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9cf1a28-85ce-4967-89cd-1d6dd7e200f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.