PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrides precipitation in Ti6Al4V titanium alloy used for airframe manufacturing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aeronautical industry is a sector constantly looking for new materials and equipment because of its tendency to expand quickly. The Ti6Al4V titanium alloy is used frequently in the aeronautic, aerospace, automobile, chemical and medical industry because it presents high strength combined with low density (approximately 4.5 g/cm3), good creep resistance (up to 550°C), excellent corrosion resistance, high flexibility, good fatigue and biocompatibility. As a result of these properties, this titanium alloy is considered an excellent material for manufacturing structural parts in the aircraft industry for modern aeronautic structures, especially for airframes and aero-engines. But its use is also problematic because the Ti6Al4V titanium alloy manifests hydrogen embrittlement, by means of hydrides precipitation in the metal. The Ti6Al4V alloy becomes brittle and fractures because of hydrogen diffusion into metal and because titanium hydrides appear and create pressure from within the metal, thus generating corrosion. Because of titanium hydrides, the titanium alloy suffers from reduced ductility, tensile strength and toughness, which can result in fractures of aeronautical parts. This poses a very serious problem for aircrafts. In this paper, rapid hydrogen embrittlement is presented along with XRD, SEM and TEM analysis. Its goal is to detect the presence of titanium hydrides and to spot the initial cracks in the metallic material.
Rocznik
Strony
643--649
Opis fizyczny
Bibliogr. 20 poz., tab., rys.
Twórcy
  • Politehnica University of Bucharest, Blv. Splaiul Independentei, No. 313, sector 6, 060042 Bucharest, Romania
autor
  • Politehnica University of Bucharest, Blv. Splaiul Independentei, No. 313, sector 6, 060042 Bucharest, Romania
Bibliografia
  • [1] V.A.R. Henriques, P.P. de Campos, C.A.A. Cairo, and J.C. Bressiani, “Production of titanium alloys for advanced aerospace systems by powder metallurgy”, Mater. Res. 8 (4), 443‒446 (2005).
  • [2] R. Păcurar, N. Bâlc, and F. Prem, “Research on how to improve the accuracy of the SLM metallic parts”, AIP Conference Proceedings 1353 (1), 1385‒1390 (2011).
  • [3] C. Rontescu, D.T. Cicic, CG. Amza, O.R. Chivu, and G. Iacobescu, “Comparative analysis of the components obtained by additive manufacturing used for prosthetics and medical instruments”, Rev. Chim. 68 (9), 2114‒2116 (2017).
  • [4] M. Wachowski, L. Sniezek, I. Szachogluchowicz, R. Kosturek, and T. Plocinski, “Microstructure and fatigue life of Cp-Ti/316L bimetallic joints obtained by means of explosive welding”, Bull. Pol. Ac.: Tech. 66 (6), 925‒933 (2018).
  • [5] J. Maszybrocka, A. Stwora, B. Gapinski, G. Skrabalak, and M. Karolus, “Morphology and surface topography of Ti6Al4V lattice structure fabricated by selective laser sintering”, Bull. Pol. Ac.: Tech. 65 (1), 85‒92 (2017).
  • [6] I. Inagaki, T. Takechi, Y. Shirai and N. Ariyasu, “Application and features of titanium for the aerospace industry”, Nippon Steel & Sumitomo Metal Technical Report 106, 22‒27 (2014).
  • [7] J.J. Xu, H.Y. Cheung, and S.Q. Shi, “Mechanical properties of titanium hydride”, J. Alloys Compd. 436 (1‒2), 82‒85 (2007).
  • [8] M. Ma, L. Wang, Y. Wang, W. Xiang, P. Lyu, B. Tang, and X. Tan, “Effect of hydrogen content on hydrogen desorption kinetics of titanium hydride”, J. Alloys Compd. 709, 445‒452 (2017).
  • [9] H. Numakura and M. Koiwa, “Hydride precipitation in titanium”, Acta Metall. 32 (10), 1799‒1807 (1984).
  • [10] H.J. Liu, L. Zhou, P. Liu, and Q.W. Liu, “Microstructural evolution and hydride precipitation mechanism in hydrogenated Ti–6Al–4V alloy”, Int. J. Hydrogen Energy 34 (23), 9596‒9602 (2009).
  • [11] Y. Baoguo, W. Yujie, Z. Yubin, and G. Longqing, “Hydrogenation behaviour of Ti6Al4V alloy”, Rare Metal Mat. Eng. 46 (6), 1486‒1490 (2014).
  • [12] D.O. Poletaev, D.A. Aksyonov, D.D. Vo, and A.G. Lipnitskii, “Hydrogen solubility in hcp titanium with the account of vacancy complexes and hydrides: A DFT study”, Comp. Mater. Sci. 114, 199‒208 (2016).
  • [13] C.P. Liang and H.R. Gong, “Fundamental influence of hydrogen on various properties of α-titanium”, Int. J. Hydrogen Energy 35 (6), 3812‒3816 (2010).
  • [14] A. San-Martin and F.D. Manchester, “The H-Ti (Hydrogen-Titanium) system”, Bull. Alloy. Phase Diagr. 8 (1), 30‒42 (1987).
  • [15] D.M. Wanderwalker, “The formation of hydrides in titanium”, Phys. Status Solidi A 105 (2), 77‒80 (1988).
  • [16] R. Laptev, V. Kudilarov, Y. Bordulev, A. Mikhaylov, and A.M. Lider, “Gas-phase hydrogenation influence on defect behavior in titanium-based hydrogen-storage material”, Prog. Nat. Sci-Mater. 27 (1), 105‒111 (2017).
  • [17] L. Miaoquan, Z. Weifu, Z. Tangkui, H. Hongliang, and L. Zhiqiang, “Effect of Hydrogen on Microstructure of Ti-6Al-4V Alloys”, Rare Metal Mat. Eng. 39 (1), 1‒5 (2010).
  • [18] P.A.T. Olsson, J. Blomqvist, C. Bjerken, and A.R. Massih, “Ab initio thermodynamics investigation of titanium hydrides”, Comp. Mater. Sci. 97, 276‒284 (2015).
  • [19] E.T. Gutelmacher and D. Eliezer, “The hydrogen embrittlement of titanium-based alloys”, JOM-US 57 (9), 46‒49 (2005).
  • [20] P. Muthukumar and M. Groll, “Metal hydride based heating and cooling systems: A review”, Int. J. Hydrogen Energy 35 (8), 3817‒3831 (2010).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9cb7cec-13e6-415a-85a3-f63f1acf33a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.