PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pattern classification by spiking neural networks combining self-organized and reward-related spike-timing-dependent plasticity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many recent studies have applied to spike neural networks with spike-timing-dependent plasticity (STDP) to machine learning problems. The learning abilities of dopaminemodulated STDP (DA-STDP) for reward-related synaptic plasticity have also been gathering attention. Following these studies, we hypothesize that a network structure combining self-organized STDP and reward-related DA-STDP can solve the machine learning problem of pattern classification. Therefore, we studied the ability of a network in which recurrent spiking neural networks are combined with STDP for non-supervised learning, with an output layer joined by DA-STDP for supervised learning, to perform pattern classification. We confirmed that this network could perform pattern classification using the STDP effect for emphasizing features of the input spike pattern and DA-STDP supervised learning. Therefore, our proposed spiking neural network may prove to be a useful approach for machine learning problems.
Rocznik
Strony
283--291
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
autor
  • Department of Computer Science, Chiba Institute of Technology 2-17-1 Tsudanuma, Narashino, Chiba, 275–0016 Japan
  • Graduate School of Applied Informatics, University of Hyogo 7–1–28 Chuo-ku, Kobe, Hyogo, 650–8588 Japan
  • Department of Management and Information Sciences, Fukui University of Technology 3–6–1 Gakuen, Fukui, Fukui, 910–8505 Japan
Bibliografia
  • [1] M. I. Rabinovich, P. Varona, A. I. Selverston, and H. D. Abarbanel, Dynamical principles in neuroscience, Reviews of modern physics, vol. 78, no. 4, pp. 1213–1265, 2006.
  • [2] R. Q. Quiroga and S. Panzeri, Principles of neural coding. CRC Press, 2013.
  • [3] S. Panzeri, J. H. Macke, J. Gross, and C. Kayser, Neural population coding: combining insights from microscopic and mass signals, Trends in cognitive sciences, vol. 19, no. 3, pp. 162–172, 2015.
  • [4] N. Schweighofer, K. Doya, H. Fukai, J. V. Chiron, T. Furukawa, and M. Kawato, Chaos may enhance information transmission in the inferior olive, Proceedings of the National Academy of Sciences, vol. 101, no. 13, pp. 4655–4660, 2004.
  • [5] J. Mejias and A. Longtin, Optimal heterogeneity for coding in spiking neural networks, Physical Review Letters, vol. 108, no. 22, 228102, 2012.
  • [6] N. Hiratani, J.-N. Teramae, and T. Fukai, Associative memory model with long-tail-distributed hebbian synaptic connections, Frontiers in computational neuroscience, vol. 6, 102, 2013.
  • [7] S. Nobukawa and H. Nishimura, Chaotic resonance in coupled inferior olive neurons with the llinas approach neuron model, Neural computation, vol. 28, no. 11, pp. 2505–2532, 2016.
  • [8] S. Nobukawa, H. Nishimura, and T. Yamanishi, Chaotic resonance in typical routes to chaos in the Izhikevich neuron model, Scientific reports, vol. 7, no. 1, 1331, 2017.
  • [9] N. K. Kasabov, Neucube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data, Neural Networks, vol. 52, pp. 62–76, 2014.
  • [10] J. H. Lee, T. Delbruck, and M. Pfeiffer, Training deep spiking neural networks using backpropagation, Frontiers in neuroscience, vol. 10, 508, 2016.
  • [11] X. Lin, X. Wang, and Z. Hao, Supervised learning in multilayer spiking neural networks with inner products of spike trains, Neurocomputing, vol. 237, pp. 59–70, 2017.
  • [12] S. R. Kulkarni and B. Rajendran, Spiking neural networks for handwritten digit recognition–supervised learning and network optimization, Neural Networks, vol. 103, pp. 118–127, 2018.
  • [13] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier, STDP-based spiking deep convolutional neural networks for object recognition, Neural Networks, vol. 99, pp. 56–67, 2018.
  • [14] Z. Lin, D. Ma, J. Meng, and L. Chen, Relative ordering learning in spiking neural network for pattern recognition, Neurocomputing, vol. 275, pp. 94–106, 2018.
  • [15] A. Tavanaei, T. Masquelier, and A. Maida, Representation learning using event-based STDP, Neural Networks, vol. 105, pp. 294–303, 2018.
  • [16] M. Mozafari, S. R. Kheradpisheh, T. Masquelier, A. Nowzari-Dalini, and M. Ganjtabesh, First-spikebased visual categorization using reward-modulated STDP, IEEE Transactions on Neural Networks and Learning Systems, vol. 99, pp. 1–13, 2018.
  • [17] A. Tavanaei, Z. Kirby, and A. S. Maida, Training spiking convnets by STDP and gradient descent, in Proceedings of 2018 International Joint Conference on Neural Networks (IJCNN). IEEE, 2018, pp. 1–8.
  • [18] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi,Spatio-temporal backpropagation for training highperformance spiking neural networks, Frontiers in neuroscience, vol. 12, 331, 2018.
  • [19] M. Bernardo, C. Budd, A. R. Champneys, and P. Kowalczyk, Piecewise-smooth dynamical systems: theory and applications. Springer Science & Business Media, 2008, vol. 163.
  • [20] N. Kasabov, Neucube evospike architecture for spatio-temporal modelling and pattern recognition of brain signals, in Proceedings of IAPR Workshop on Artificial Neural Networks in Pattern Recognition. Springer, 2012, pp. 225–243.
  • [21] N. Kasabov and E. Capecci, Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes, Information Sciences, vol. 294, pp. 565–575, 2015.
  • [22] C. Ge, N. Kasabov, Z. Liu, and J. Yang, A spiking neural network model for obstacle avoidance in simulated prosthetic vision, Information Sciences, vol. 399, pp. 30–42, 2017.
  • [23] D. Verstraeten, B. Schrauwen, D. Stroobandt, and J. Van Campenhout, Isolated word recognition with the liquid state machine: a case study, Information Processing Letters, vol. 95, no. 6, pp. 521–528, 2005.
  • [24] A. Ghani, T. M. McGinnity, L. P. Maguire, and J. Harkin, Neuro-inspired speech recognition with recurrent spiking neurons, in Proceedings of International Conference on Artificial Neural Networks. Springer, 2008, pp. 513–522.
  • [25] Z. Yanduo and W. Kun, The application of liquid state machines in robot path planning, Journal of Computers, vol. 4, no. 11, pp. 1183–1186, 2009.
  • [26] Y. Zhang, P. Li, Y. Jin, and Y. Choe, A digital liquid state machine with biologically inspired learning and its application to speech recognition, IEEE transactions on neural networks and learning systems, vol. 26, no. 11, pp. 2635–2649, 2015.
  • [27] Y. Jin and P. Li, Calcium-modulated supervised spike-timing-dependent plasticity for readout training and sparsification of the liquid state machine, in Proceedings of 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, 2017, pp. 2007–2014.
  • [28] R. V. Florian, Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity, Neural Computation, vol. 19, no. 6, pp. 1468–1502, 2007.
  • [29] N. Fremaux, H. Sprekeler, and W. Gerstner, Functional requirements for reward-modulated spiketiming-dependent plasticity, Journal of Neuroscience, vol. 30, no. 40, pp. 13 326–13 337, 2010.
  • [30] T.-S. Chou, L. D. Bucci, and J. L. Krichmar, Learning touch preferences with a tactile robot using dopamine modulated STDP in a model of insular cortex, Frontiers in neurorobotics, vol. 9, p. 6, 2015.
  • [31] A. H. Marblestone, G. Wayne, and K. P. Kording, Toward an integration of deep learning and neuroscience, Frontiers in computational neuroscience, vol. 10, 94, 2016.
  • [32] A. S. Warlaumont and M. K. Finnegan, Learning to produce syllabic speech sounds via rewardmodulated neural plasticity, PloS one, vol. 11, no. 1, e0145096, 2016.
  • [33] Y. Kawai, T. Takimoto, J. Park, and M. Asada, Efficient reward-based learning through body representation in a spiking neural network, in Proceedings of the 8th Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics. IEEE, 2018, pp. 198–203.
  • [34] E. M. Izhikevich, Polychronization: computation with spikes, Neural computation, vol. 18, no. 2, pp. 245–282, 2006.
  • [35] E. M. Izhikevich, Solving the distal reward problem through linkage of STDP and dopamine signaling, Cerebral cortex, vol. 17, no. 10, pp. 2443–2452, 2007.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9c4f92c-e098-4014-8011-f9132d48f823
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.