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Abstract

Many recent studies have applied to spike neural networks with spike-timing-dependent
plasticity (STDP) to machine learning problems. The learning abilities of dopamine-
modulated STDP (DA-STDP) for reward-related synaptic plasticity have also been gath-
ering attention. Following these studies, we hypothesize that a network structure combin-
ing self-organized STDP and reward-related DA-STDP can solve the machine learning
problem of pattern classification. Therefore, we studied the ability of a network in which
recurrent spiking neural networks are combined with STDP for non-supervised learning,
with an output layer joined by DA-STDP for supervised learning, to perform pattern clas-
sification. We confirmed that this network could perform pattern classification using the
STDP effect for emphasizing features of the input spike pattern and DA-STDP super-
vised learning. Therefore, our proposed spiking neural network may prove to be a useful
approach for machine learning problems.
Keywords: spiking neural network, spike timing-dependent plasticity, dopamine-modulated
spike timing-dependent plasticity, pattern classification

1 Introduction

Different types of neural coding (including rate,
temporal, and population coding) support adaptive
brain information processes [1, 2, 3]. Spiking neu-
ral networks can describe these types of neural
codes based on the spiking activity generated from
membrane potential dynamics and have therefore
been widely utilized to reveal the mechanisms for

information processes such as memory and learn-
ing [4, 5, 6, 7, 8]. Recent studies have reported the
application of these spiking neural networks to ma-
chine learning [9, 10, 11, 12, 13, 14, 15, 16, 17, 18].

Previously, spiking neural networks had diffi-
culty in learning by conventional backpropagation,
which is used in the rate coding model. This diffi-
culty was attributed to the fact that the spikes, in-
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cluding the discontinuous trajectory of the ystem
state, are not differentiable [19]; however, differen-
tiable activation functions are vital for conventional
backpropagation. To overcome this difficulty, Lee
et al. proposed a method to adopt backpropaga-
tion into the spiking neural network, focusing on
the continuous membrane potential behaviors [10].
Subsequently, they trained deep spiking neural net-
works using this backpropagation [10]. However,
their backpropagation only focused on the tempo-
ral dominant spike behaviors and ignored the spa-
tial dominant spike behaviors. Moreover, to en-
hance the accuracy and efficiency of learning, Wu et
al. expanded the backpropagation for spiking neu-
ral networks, considering both spatiotemporal and
temporal behaviors of spikes [18].

As another approach for learning for spiking
neural networks, a learning approach using physi-
ological spike-timing-dependent plasticity (STDP)
has been used. For example, Kasabov et al. pro-
posed a spiking neural network for classification
and time-series prediction, called NeuCube [9, 20,
21, 22]. NeuCube is composed of an encoding mod-
ule as the input layer, spiking neural clusters lo-
cated in three-dimensional space as the inter-layer
and a function module with supervised learning as
the output layer. Another example of spiking neu-
ral networks for classification is the convolutional
spiking neural network, composed of convolutional
and pooling layers with STDP, proposed by Kher-
adpisheh et al. [13]. However, in their network,
classification is implemented using a support vec-
tor machine located at the output layer. In addition,
Tavanaei et al. proposed new STDP rules based
on backpropagation in the fully connected network
as output layers in a convolutional neural network
[17]. In their study, a convolutional neural network
could be implemented using a spiking neural net-
work alone, rather than using the conventional rate
coding model. A liquid state machine, which is a
spiking network consisting of an input layer, a re-
current intermediate layer called a reservoir, and a
readout layer is also widely utilized for dynamical
pattern classification [23, 24, 25, 26]. Recently, Jin
& Li adapted a supervised type of STDP to the liq-
uid state machine and showed that their proposed
network exhibited high accuracy for speech recog-
nition [27].

Based on these studies, dopamine (DA)
synapses (the neurotransmitter involved in reward-
related synaptic plasticity), can be adopted to the
learning method for the spiking neural networks
[28, 29, 30, 31, 32, 33, 16]. In STDP rules, the
synaptic weights are constructed by inter-network
spikes. However, in dopamine-modulated STDP
(DA-STDP) rules, they are constructed based on
inter-network spikes and reward signals that corre-
spond to teaching signals. In brief, DA-STDP and
STDP correspond to supervised and unsupervised
types of synaptic plasticity, respectively. As an ex-
ample of an application of DA-STDP, Mazafari et
al. showed that DA-STDP exhibits a greater ability
to learn objective recognition (supervised learning),
compared to STDP for unsupervised learning [16].
Moreover, as an example of a spiking neural net-
work combining STDP and DA-STDP, Kawai et al.
and Warlaumont et al. demonstrated that their pro-
posed networks acquire a motor control function,
and STDP applying a feedback signal from the ob-
jective system enhances the learning efficiency of
DA-STDP [32, 33]. Their proposed spiking neural
networks added the synaptic plasticity in the reser-
voir layer to the conventional structure of the liq-
uid state machines [23, 24, 25, 26]. However, they
did not consider learning for many motor patterns.
Therefore, the learning ability of the spiking neu-
ral networks combined with STDP and DA-STDP
against several tasks has not been studied. The ap-
plicability of this network to other machine learn-
ing problems has also not been clarified. Hence, in
this study, we examine the classification for numer-
ous patterns as a machine learning problem, using
a spiking neural network that combines STDP and
DA-STDP.

2 Materials and Methods

2.1 Spiking neural network

Figure 1 shows the structure of the spiking neu-
ral network used in this study. This spiking neural
network comprises two types of sub-networks. The
first is a recurrent neural network that consists of
excitatory neurons, with synapses self-organized by
STDP and inhibitory neurons. As the input neural
population, a part of the excitatory neural popula-
tion is joined by Nex input spike generators with the
Poisson process. The joined probability to excita-
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tory neurons was set to 0.1. The combination of
activated (spike rate Λi > 0 [Hz] (i = 1,2, · · · ,Nex))
and deactivated states (Λi = 0 [Hz]) in this gener-
ator represents the input pattern. The second sub-
network is the neural population that consists of ex-
citatory neurons as an output layer. These excita-
tory neurons are joined to excitatory neurons in the
previous layer by DA-STDP synapses. Here, the
jointed probability of excitatory neurons between
layers is set to 0.01. With this network structure,
we expect that the spikes induced by the input spike
generators propagate through the recurrent neural
network and reach the output layer. This propaga-
tion is emphasized by STDP and DA-STDP learn-
ing.

In this spiking neural network, the membrane
potential v(t) of each neuron is described by the
conductance based on a leaky-integrate-and-fire
neuron model

dv
dt

=− 1
τm

(v−VL)−gE(v−VE)−gI(v−VI), (1)

if v ≥Vthr[mV], then v(t)→Vr, (2)

here τm, VE , VI , and VL are the membrane de-
cay constant, reversal potentials of the AMPA-
receptor-mediated excitatory synaptic current, in-
hibitory synaptic current, and leak current, respec-
tively. The excitatory synaptic conductance gE(t)
[ms−1] and inhibitory synaptic conductance gI(t)
[ms−1] are given by

dgX

dt
=−gX

τs
+∑

j
GX , j ∑

s j

δ(t − s j −d j), X = E, I.

(3)
here, τs is the decay constant of the excitatory and
inhibitory synaptic conductance. s j, d j, GE, j, and
GI, j are spike times of synaptic input from the j-th
neuron, synaptic delays, synaptic weights of excita-
tory, and inhibitory synapses, respectively. In this
study, we used parameter sets for VI = −80 [mV],
VL =−70 [mV], Vr =−60 [mV], Vthr =−50 [mV],
VE = 0 [mV], τm = 20 [ms] (excitatory neuron),
τm = 10 [ms] (inhibitory neuron), and τs = 2 [ms].
We solve Eqs. (1), (2), and (3) by the Euler method
with the size of time step ∆t = 0.1 [ms]. The re-
fractory period is set to 1 [ms]. In excitatory-to-
excitatory connections and other connections, the
synaptic delays are set to uniform random values
between 1 to 3 [ms] and ones between 0 to 2 [ms].
The size of spiking neural networks with STDP is

NE = 10000 and NI = 2000 for excitatory neurons
and inhibitory neurons, respectively. The size of
the neural population at the output layer is set to
No = 10.

The synaptic weights GE, j in the spiking neu-
ral network are self-organized by the STDP rule as
follows

∆G =

{
A+e−tstdp/τ+ (if tstdp > 0),
A−e−tstdp/τ− (if tstdp < 0),

(4)

tstdp = tpost − tpre, (5)

here, tpost and tpre are the spike times of the post- and
pre-neuron, respectively. The parameters (A±,τ±)
are set to A+ = 0.1,A− = 0.12, and τ± = 20
[ms][34].

The output layer is jointed to the recurrent spik-
ing neural network by the synaptic connections with
DA-STDP [35]. DA-STDP rule is given by

ċda = −cda/τc +STDP(tstdp)δ(t − tpre/post),(6)

ḋ = −d/τd +DA(t), (7)

ẇout = d Pdaċda, (8)

here, cda, d, τc,d , and Pda represent the degree of ac-
tivation for an enzyme for plasticity, DA concentra-
tion [µM], time constants, and learning rate, respec-
tively. STDP(tstdp) is the STDP function given by
Eq.(4). DA(t) is the reward signal, i.e., DA(t)= 1,0
in the case for applying the reward or not. In this
study, we used Pda = 0.01, τc = 200 [ms] and τd = 2
[ms] [33].

2.2 Evaluation indexes

To observe neural activity, we used spiking rates
in the excitatory neural population rE Hz and the in-
hibitory neural population rI Hz as follows

rX(t) = 1000
SX(t)
∆t NX

X = E, I, (9)

here, SE and SI indicate the counts of spikes in
the bin where the width is 0.1 [ms] for excitatory
and inhibitory neural populations, respectively. The
rE(t) and rI(t) are smoothed by a Gaussian-shaped
window with a width of 10 [ms].

2.3 Learning patterns and timeline for
learning and testing

Figure 2 shows the input spiking patterns for
learning and the timeline for learning and testing.
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Figure 1. Spiking neural network comprising mutually connected recurrent network layer with
spike-timing-dependent plasticity (STDP) and output neural layer with dopamine-modulated STDP

(DA-STDP). The recurrent neural network comprises excitatory neurons, with synapses self-organized by
STDP and inhibitory neurons. As the input neural population, a part of the excitatory neural population is
joined by input spike generators with the Poisson process. The output layer is the neural population that

comprises the excitatory neurons as an output layer that is joined to excitatory neurons in the previous layer
by the DA-STDP synapses.

The learning period is set to 0 ≤ t ≤ 30 [sec]. Three
input patterns are applied separately. The periods
for the input patterns are divided such that one sec-
ond allows for the transition not updating synap-
tic weights and the following nine seconds allow
for learning by updating synaptic weights following
STDP and DA-STDP. Here, when input pattern # j
( j = 1,2,3) is applied, the dopamine signal DA j(t)
is set to 1 and the other signals are set to 0. The test
period is set to 30 ≤ t ≤ 60 [sec]. The spiking rates
of the output neural population for each of the three
input patterns is then observed. The # j input pattern
is set to Λi =Λ (1+( j−1)[Nex

3 ]≤ i≤ j[Nex
3 ]), where

[·] is a Gaussian symbol, and i indicates a number
for input spike generation (i = 1,2, · · · ,Nex). In the
test period, the pattern with the longest time that ex-
hibits the highest spiking rate of output neural pop-
ulation corresponding with the pattern is selected as
the recalling pattern.

3 Results

3.1 Classification of input spiking patterns

Figure 3 shows the time series of the spiking
rate in the output neural population ri

o (i = 1,2,3).
In the test period 30 ≤ t ≤ 60 [s], the high spiking
rate of the output neural module is induced by the
corresponding input spiking pattern. From 10 trials
of learning and recalling patterns, the success rate
of recalling exhibits 1.0 against all patterns. Figure
4 represents the distribution of synaptic weights be-
tween the recurrent neural network and the output
layers after learning. This result confirms that spe-
cific synaptic weights are enhanced by DA-STDP.

3.2 Comparison with a case not adopting
STDP in a recurrent neural network

To evaluate the function of STDP in the recur-
rent neural network, Figure 5 shows the time series
of spiking rates in the output neural population ri

o
(i = 1,2,3) when STDP is not adopted in the recur-
rent neural network and for Λ = 1.0 [Hz]. During
the test 30 ≤ t ≤ 60 [s], the high spiking rate of the
output neural module was not always induced by a
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Figure 2. Timeline for learning and evaluation. Blue and orange bars indicate learning and evaluation,
respectively. In the learning period, three input patterns are applied separately. The periods for the input
patterns are divided such that the first second allows for the transition not updating synaptic weights and

the following nine seconds allow for learning by updating synaptic weights following STDP and
DA-STDP. Here, when the input pattern # j ( j = 1,2,3) is applied, the dopamine signal DA j(t) is set to 1,
and the other signals are set to 0. In the test period, the spiking rates of the output neural population for

each of the three input patterns are subsequently observed.
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Figure 3. Time series of spiking rates in output neural population ri
o (i = 1,2,3). In the test period

30 ≤ t ≤ 60 [s], the high spiking rate of the output neural module is induced by the corresponding input
spiking pattern. From 10 trials of learning and recalling patterns, the success rate of recalling exhibits 1.0

against all patterns.
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Figure 4. Distribution of synaptic weights between the recurrent neural network and output layers after
learning. The synaptic weights specifically enhanced by DA-STDP are confirmed.

corresponding input spiking pattern. From 10 trials
of learning and recalling patterns, the success rate
of recalling exhibits 0.8, 0.9, and 0.7 against pat-
terns #1, #2, and #3, respectively. In the input spike
rate Λ = 3.0 [Hz], which corresponds to the input
spiking rate of Figures.3 and 4, the output mod-
ules exhibit excessive spiking rates against all input
spike patterns, thus showing that pattern classifica-
tion has not been successful.

4 Discussion and Conclusion

In this study we examined the pattern classi-
fication abilities of the spiking neural network by
combining a recurrent neural network with STDP as
self-organized synaptic plasticity, with output mod-
ules jointed by DA-STDP as reward-related synap-
tic plasticity for supervised learning. This network
was able to perform pattern classification by learn-
ing three input patters. Moreover, when compar-
ing the success rates for recalling patterns between
cases applying STDP and not applying STDP, it was
found that STDP in recurrent neural networks can
enhance the supervised learning by DA-STDP.

The mechanism to obtain the classification
function for input spike patterns is as follows.
The spikes, which are induced by the input spike
generators, propagate through the recurrent neu-
ral network. The synaptic weights in this path-
way are enhanced by STDP learning. We assume
that these pathways for several input spike pat-
terns are different from one another. Further, these
enhanced spikes are applied to the output layer
through synaptic weights with DA-STDP. By apply-
ing the dopamine signal to the output neural popu-
lation corresponding to the input spike pattern, the
synaptic weights from specific pathways are en-
hanced selectively. Finally, the output neural pop-
ulation produces spikes corresponding to the input
spike pattern. Our results show that STDP learn-
ing in the recurrent neural network improves suc-
cess rates for recalling patterns. Moreover, the se-
lectively enhanced synaptic weights between the re-
current network and output layers were observed.
Within addition to the learning process, redundant
spikes, i.e., the excessive spiking observed in the
case of not adopting STDP, are prevented by reduc-
ing the unnecessary synaptic weights. It can thus
be interpreted that the features of an input spike
pattern are emphasized by the self-organized STDP,
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Figure 5. Time series of spiking rate in output neural population ri
o (i = 1,2,3) not adopting STDP in

recurrent neural network and for Λ = 1.0 [Hz]. Among 10 trials of learning and recalling patterns, the
success rate of recalling exhibits 0.8, 0.9, and 0.7 against patterns #1, #2, and #3, respectively.

and consequently, the output layers efficiently learn
with DA-STDP based on these features.

Many spiking neural networks adopt a struc-
ture in which the spiking neural network with unsu-
pervised learning is located before the output layer
with supervised learning [9, 20, 21, 22, 33, 13]. It
has been previously shown that convolutional lay-
ers with unsupervised STDP synapses can detect
the edges of applied images [13] and that self-
organized STDP in the recurrent neural network,
before output layers, enhance the learning effi-
ciency for motor controls [33]. These findings are
congruent with our results.

The main limitation of this study is that the sizes
of the input patterns are small (10 spike genera-
tors); therefore, the ability to learn and recalling for
more expanded sizes should be evaluated in the fu-
ture. However, in cases with expanding input size,
it is assumed that the spiking rates become too high
to facilitate proper learning and recall. To prevent
the excessive spiking rate, adopting other types of
synaptic plasticity, such as intrinsic and short-term
plasticity is needed.

In conclusion, the findings presented herein re-
veal that spiking neural networks combining self-
organized and reward-related STDPs have the abil-

ity to learn and recall input spike patterns. Al-
though several limitations must be considered, our
proposed spiking neural network could be a useful
approach for pattern classification in the future.
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