PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical investigation of a broadband coherent supercontinuum generation in Ga₈Sb₃₂S₆₆ chalcogenide photonic crystal fiber with all-normal dispersion

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
All normal dispersion (ANDi) and highly nonlinear chalcogenide glass photonic crystal fiber (PCF) is proposed and numerically investigated for a broad, coherent and ultra-flat mid-infrared supercontinuum generation. The proposed PCF consists of a solid core made of Ga₈Sb₃₂S₆₆ glass surrounded by seven rings of air holes arranged in a triangular lattice. We show by employing the finite difference frequency domain (FDFD) method that the Ga₈Sb₃₂S₆₆ PCF dispersion properties can be engineered by carefully adjusting the air holes diameter in the cladding region and ANDi regime is achieved over the entire range of wavelengths with a zero chromatic dispersion around 4.5 μm. Moreover, we demonstrate that injecting 50 fs width and 20 kW peak power laser pulses (corresponding to a pulse energy of 1.06 nJ) at a pump wavelength of 4.5 μm into a 1 cm long ANDi Ga₈Sb₃₂S₆₆ PCF generates a broad, flat-top and perfectly coherent SC spectrum extending from 1.65 μm to 9.24 μm at the 20 dB spectral flatness. These results make the proposed Ga₈Sb₃₂S₆₆ PCF an excellent candidate for various important mid-infrared region applications including mid-infrared spectroscopy, medical imaging, optical coherence tomography and materials characterization.
Twórcy
  • LEVRES Laboratory, Faculty of Exact Sciences, University of Echahid Hamma Lakhdar EL Oued, BP 789, El Oued, 39000, Algeria
autor
  • Department of Electronics and Telecommunications, Faculty of Sciences and Technology, University of 8 mai 1945 Guelma, 24000, Guelma, Algeria
autor
  • LEVRES Laboratory, Faculty of Exact Sciences, University of Echahid Hamma Lakhdar EL Oued, BP 789, El Oued, 39000, Algeria
Bibliografia
  • [1] R.R. Alfano, The Supercontinuum Laser Source: the Ultimate White Light, 3rd edition, Springer, 2016, http://dx.doi.org/10.1007/978-1-4939-3326-6.
  • [2] R.R. Alfano, S.L. Shapiro, Observation of self-phase modulation and small-scale filaments in crystals and glasses, Phys. Rev. Lett. 24 (1970) 592–596, http://dx.doi.org/10.1103/PhysRevLett.24.592.
  • [3] D. Faccio, J.M. Dudley, Frontiers in modern optics, in: Proceedings of the International School of Physics, Enrico Fermi, IOS Press, The Netherlands, 2016.
  • [4] J.M. Dudley, J.R. Taylor, Supercontinuum Generation in Optical Fibers, Cambridge University Press, 2010, http://dx.doi.org/10.1017/CBO9780511750465.
  • [5] J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber, Rev. Mod. Phys. 78 (2006) 1135–1184, http://dx.doi.org/10.1103/RevModPhys.78.1135.
  • [6] A. Hartung, A.M. Heidt, H. Bartelt, Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation, Opt. Express 19 (2011) 7742–7749, http://dx.doi.org/10.1364/OE.19.007742.
  • [7] A.M. Heidt, A. Hartung, G.W. Bosman, P. Krok, E.G. Rohwer, H. Schwoerer, H.Bartelt, Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers, Opt. Express 19 (2011) 3775–3787, http://dx.doi.org/10.1364/OE.19.003775.
  • [8] M. Yasin, Sulaiman Wadi Harun, H. Arof, Recent progress in optical fiber research, InTech (2012), http://dx.doi.org/10.5772/2428.
  • [9] R. Thomson, C. Leburn, D. Reid, Ultrafast Nonlinear Optics, Springer, 2013, http://dx.doi.org/10.1007/978-3-319-00017-6.
  • [10] L. Thévenaz, Advanced fiber optics concepts and technology, EPFL press, Switzerland, 2011.
  • [11] Philip St.J. Russell, Photonic-crystal fibers, J. Lightwave Technol. 24 (12) (2006) 4729–4749, http://dx.doi.org/10.1109/JLT.2006.885258.
  • [12] A. Zakery, S.R. Elliot, Optical Nonlinearities in Chalcogenide Glasses and Their Applications, Springer, 2007, http://dx.doi.org/10.1007/978-3-540-71068-4.
  • [13] S. Wabnitz, B.J. Eggleton, All-optical Signal Processing: Data Communication and Storage Applications, Springer, 2015, http://dx.doi.org/10.1007/978-3-319-14992-9.
  • [14] N. Granzow, M.A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K.F. Lee, M.E. Fermann, L. Wondraczek, P.St.J. Russell, Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide, Opt. Express 21 (2013) 10969–10977, http://dx.doi.org/10.1364/OE.21.010969.
  • [15] B.J. Eggleton, B.L. Davies, K. Richardson, Chalcogenide photonics, Nat. Photonics 5 (2011) 141–148, http://dx.doi.org/10.1038/nphoton.2011.309.
  • [16] P. Yan, R. Dong, G. Zhang, H. Li, S. Ruan, H. Wei, J. Luo, Numerical simulation on the coherent time-critical 2–5 mm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile, Opt. Commun. 293 (2013) 133–138, http://dx.doi.org/10.1016/j.optcom.2012.11.093.
  • [17] T.S. Saini, A. Kumar, R.K. Sinha, Broadband mid-IR supercontinuum generation in As2Se3 based chalcogenide photonic crystal fiber: a new design and analysis, Opt. Commun. 345 (2015) 13–19, http://dx.doi.org/10.1016/j.optcom.2015.02.049.
  • [18] M. Diouf, A. Ben Salem, R. Cherif, H. Saghaei, A. Wague, Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy, Pure Appl. Opt. J. Eur. Opt. Soc. Part A 56 (2) (2017) 163–169, http://dx.doi.org/10.1364/AO.56.000163.
  • [19] A. Ben Salem, M. Diouf, R. Cherif, A. Wague, M. Zghal, Ultraflat-top mid-infrared coherent broadband supercontinuum using all normal As2S5-borosilicate hybrid photonic crystal fiber, Opt. Eng. 55 (6) (2016), 066109, http://dx.doi.org/10.1117/1.OE.55.6.066109.
  • [20] M. Diouf, R. Cherif, A. Ben Salem, A. Wague, Ultra-broadband, coherent mid-IR supercontinuum expanding from 1.5 to 12.2 m in new design of AsSe2 photonic crystal fibre, J. Mod. Optic. 64 (13) (2017) 1335–1341, http://dx.doi.org/10.1080/09500340.2017.1288830.
  • [21] M.R. Karim, H. Ahmad, B.M.A. Rahman, All-normal dispersion chalcogenide PCF for ultraflat mid-infrared supercontinuum generation, IEEE Photonics Technol. Lett. 29 (21) (2017) 1792–1795, http://dx.doi.org/10.1109/LPT.2017.2752214.
  • [22] M.R. Karim, H. Ahmad, B.M.A. Rahman, Design and modeling of dispersion-engineered all-chalcogenide triangular-core fiber for mid infrared-region supercontinuum generation, J. Opt. Soc. Am. B 35 (2) (2018) 266–275, http://dx.doi.org/10.1364/JOSAB.35.000266.
  • [23] A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, D. Tang, Ga–Sb–S Chalcogenide Glasses for Mid-Infrared Applications, J. Am. Ceram. Soc. 99 (1) (2016) 12–15, http://dx.doi.org/10.1111/jace.14025.
  • [24] T.S. Saini, U.K. Tiwari, R.K. Sinha, Rib waveguide in Ga-Sb-S chalcogenide glass for on-chip mid-IR supercontinuum sources: design and analysis, J. Appl. Phys. 122 (2017), 053104, http://dx.doi.org/10.1063/1.4997541.
  • [25] J. Boruah, T.S. Saini, R.K. Sinha, Low bend loss photonic crystal fiber in Ga–Sb–S-based chalcogenide glass for nonlinear applications: design and analysis, J. Nanophotonics 11 (3) (2017), 036002, http://dx.doi.org/10.1117/1.JNP.11.036002.
  • [26] S. Guo, F. Wu, S. Albin, H. Tai, R.S. Rogowski, Loss and dispersion analysis of microstructured fibers by finite-difference method, Opt. Express 12 (2004) 3341–3352, http://dx.doi.org/10.1364/OPEX.12.003341.
  • [27] Z. Zhu, T.G. Brown, Full-vectorial finite-difference analysis of microstructured optical fibers, Opt. Express 10 (2002) 853–864, http://dx.doi.org/10.1364/OE.10.000853.
  • [28] A. Medjouri, L.M. Simohamed, O. Ziane, A. Boudrioua, Analysis of a new circular photonic crystal fiber with large mode area, Optik 126 (2015) 5718–5724, http://dx.doi.org/10.1016/j.ijleo.2015.09.035.
  • [29] G.P. Agrawal, Nonlinear Fiber Optics, 5th edition, Academic Press, 2013.
  • [30] K. Rottwitt, J.H. Povlsen, Analyzing the fundamental properties of Raman amplification in optical fibers, J. Lightwave Technol. 23 (2005) 3597–3605, http://dx.doi.org/10.1109/JLT.2005.857776.
  • [31] M. Klimczak, G. Soboń, R. Kasztelanic, K.M. Abramski, R. Buczyński, Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser, Sci Rep-Uk 6 (2016) 1–14, http://dx.doi.org/10.1038/srep19284.
  • [32] G. Genty, A.T. Friberg, J. Turunen, Chapter two-Coherence of supercontinuum light, Prog. Optics 61 (2016), http://dx.doi.org/10.1016/bs.po.2015.10.002.
  • [33] M.H. Frosz, Validation of input-noise model for simulations of supercontinuum generation and rogue waves, Opt. Express 18 (2010) 14778–14787, http://dx.doi.org/10.1364/OE.18.014778.
  • [34] C. Ciret, S.P. Gorza, Generation of ultra-broadband coherent supercontinuum in tapered and dispersion managed silicon nanophotonic waveguides, J. Opt. Soc. Am. B 34 (2017) 1156–1162, http://dx.doi.org/10.1364/JOSAB.34.001156.
  • [35] M. Klimczak, B. Siwicki, A. Heidt, R. Buczyński, Coherent supercontinuum generation in soft glass photonic crystal fibers, Photonics Res 5 (6) (2017) 710–727, http://dx.doi.org/10.1364/PRJ.5.000710.
  • [36] R.W. Boyd, Nonlinear Optics, 3rd edition, Academic Press, 2008.
  • [37] R.A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A.M. Weinerand, M. Woerner, Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 m, J. Opt. Soc. Am. B 17 (12) (2000) 2086–2094, http://dx.doi.org/10.1364/JOSAB.17.002086.
  • [38] W.J. Tomlinson, R.H. Stolen, A.M. Johnson, Optical wave breaking of pulses in nonlinear optical fibers, Opt. Lett. 10 (9) (1985) 457–459, http://dx.doi.org/10.1364/OL.10.000457.
  • [39] C. Finot, B. Kibler, L. Provost, S. Wabnitz, Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers, J. Opt. Soc. Am. B 25 (2008) 1938–1948, http://dx.doi.org/10.1364/JOSAB.25.001938.
  • [40] L.E. Hooper, P.J. Mosley, A.C. Muir, W.J. Wadsworth, J.C. Knight, Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion, Opt. Express 19 (2011) 4902–4907, http://dx.doi.org/10.1364/OE.19.004902.
  • [41] P.S. Maji, P.R. Chaudhuri, Design of all-normal dispersion based on multimaterial photonic crystal fiber in IR region for broadband supercontinuum generation, Pure Appl. Opt. J. Eur. Opt. Soc. Part A 54 (13) (2015) 4042–4048, http://dx.doi.org/10.1364/AO.54.004042.
  • [42] M. Kalantari, A. Karimkhani, H. Saghaei, Ultra-Wide mid-IR supercontinuumgeneration in As2S3photonic crystal fiber by rods filling technique, Optik 158(2018) 142–151, http://dx.doi.org/10.1016/j.ijleo.2017.12.014.
  • [43] B. Siwicki, A. Filipkowski, A. Kasztelanic, A. Klimczak, A. Buczyński, Nanostructured graded-index core chalcogenide fiber with all-normaldispersion– design and nonlinear simulations, Opt. Express 25 (11) (2017)12984–12998, http://dx.doi.org/10.1364/OE.25.012984.
  • [44] L. Froehly, J. Meteau, Supercontinuum sources in optical coherencetomography: A state of the art and the application to scan-free time domaincorrelation techniques and depth dependant dispersion compensation, Opt.Fiber Technol. 18 (2012) 411–419, http://dx.doi.org/10.1016/j.yofte.2012.08.001.
  • [45] R. Su, M. Kirillin, E.W. Chang, E. Sergeeva, S.H. Yun, L. Mattsson, Perspectivesof mid-infrared optical coherence tomography for inspection andmicrometrology of industrial ceramics, Opt. Express 22 (13) (2014)15804–15819, http://dx.doi.org/10.1364/OE.22.015804.
  • [46] A.V. Paterova, H. Yang, C. An, D.A. Kalashnikov, L.A. Krivitsky, Tunable opticalcoherence tomography in the infrared range using visible photons, QuantumSci. Technol. 3 (2018), 025008, http://dx.doi.org/10.1088/2058-9565/aab567.
  • [47] C.S. Colley, J.C. Hebden, D.T. Delpy, A.D. Cambrey, R.A. Brown, E.A. Zibik, W.H.Ng, L.R. Wilson, J.W. Cockburn, Mid-infrared optical coherence tomography,Rev. Sci. Instrum. 78 (2007), 123108, http://dx.doi.org/10.1063/1.2821609.
  • [48] W. Drexler, J.G. Fujimoto, Optical Coherence Tomography: Technology andApplications, Springer, 2015, http://dx.doi.org/10.1007/978-3-319-06419-2.
  • [49] H. Takebe, D.J. Brady, D.W. Hewak, K. Morinaga, Thermal properties ofGa2S3-based glass and their consideration during fiber drawing, J. Non-Cryst.Solids 258 (1-3) (1999) 239–243, http://dx.doi.org/10.1016/S0022-3093(99)00540-2.
  • [50] V.A.G. Rivera, D. Manzani, Technological Advances in Tellurite GlassesProperties, Processing, and Applications, Springer, 2017, http://dx.doi.org/10.1007/978-3-319-53038-3.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9c0c822-2567-4310-9da8-7b47946e1214
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.