PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal Decomposition, Ignition and Kinetic Evaluation of Magnesium and Aluminium Fuelled Pyrotechnic Compositions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes the thermal, kinetic and ignition behaviour of three pyrotechnic mixtures comprising Al + Ba(NO3)2, Mg + NH4ClO4, and Mg + KMnO4. Aluminium (Al) and magnesium (Mg) are metal fuels whereas barium nitrate, potassium permanganate and ammonium perchlorate are oxidants. The main objective of the paper is to assess the safety and relative reactivity of these pyrotechnic combinations. The experimental results indicate that aluminium powder reacts exothermically with the decomposition products of barium nitrate near 601 °C. A similar kind of exothermic reaction takes place between magnesium powder and ammonium perchlorate at 338 °C. Heat flow data obtained from multiple heating rate experiments were used to calculate the kinetic parameters, such as activation energy, reaction rate constant and frequency factor, using the Kissinger method. Critical ignition temperatures of all three compositions have been estimated in order to evaluate their thermal stability. The results show that all of these compositions are thermally stable and their relative reactivity decreases in the following order: Mg + NH4ClO4 > Mg + KMnO4 > Al + Ba(NO3)2.
Rocznik
Strony
579--592
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • School of Chemical and Materials Engineering, National University of Sciences and Technology Sector H-12, Islamabad, Pakistan
autor
  • School of Chemical and Materials Engineering, National University of Sciences and Technology Sector H-12, Islamabad, Pakistan
Bibliografia
  • [1] Danali S., Palaiah R., Raha K., Developments in Pyrotechnics (Review Paper), Defence Sci. J., 2010, 60(2), 152-158.
  • [2] Conkling J.A., Mocella C., Chemistry of Pyrotechnics: Basic Principles and Theory, CRC Press, 2011, pp. 1-6, ISBN 1420018094.
  • [3] Kang X., Zhang J., Zhang Q., Du K., Tang Y., Studies on Ignition and After Burning Processes of KClO4/Mg Pyrotechnics Heated in Air, J. Therm. Anal. Calorim., 2012, 109(3), 1333-1340.
  • [4] Eslami A., Hosseini S., Pourmortazavi S.M., Thermoanalytical Investigation on Some Boron-Fuelled Binary Pyrotechnic Systems, Fuel, 2008, 87(15), 3339-3343.
  • [5] Hosseini S.G., Pourmortazavi S.M., Hajimirsadeghi S.S., Thermal Decomposition of Pyrotechnic Mixtures Containing Sucrose with either Potassium Chlorate or Potassium Perchlorate, Combust. Flame, 2005, 141(3), 322-326.
  • [6] Zeman S., Yan Q.L., Vlček M., Recent Advances in the Study of the Initiation of Energetic Materials Using Characteristics of Their Thermal Decomposition. Part I. Cyclic Nitramines, Cent. Eur. J. Energ. Mater., 2014, 11(2), 173-189.
  • [7] Yao M., Chen L., Yu J., Peng J., Thermoanalytical Investigation on Pyrotechnic Mixtures Containing Mg-Al Alloy Powder and Barium Nitrate, Procedia Eng., 2012, 45, 567-573.
  • [8] Brown S., Charsley E.L., Goodall S., Laye P.G., Rooney J.J., Griffiths T.T., Studies on the Ageing of a Magnesium-Potassium Nitrate Pyrotechnic Composition using Isothermal Heat Flow Calorimetry and Thermal Analysis Techniques, Thermochim. Acta, 2003, 401(1), 53-61.
  • [9] Tuukkanen I., Charsley E.L., Goodall S., Laye P.G., Rooney J.J., Griffiths T.T., An Investigation of Strontium Nitrite and Its Role in the Ageing of the Magnesium- Strontium Nitrate Pyrotechnic System Using Isothermal Microcalorimetry and Thermal Analysis Techniques, Thermochim. Acta, 2006, 443(1), 116-121.
  • [10] Pourmortazavi S., Hajimirsadeghi S., Hosseini S., Characterization of the Aluminium/Potassium Chlorate Mixtures by Simultaneous TG-DTA, J. Therm. Anal. Calorim., 2006, 84(3), 557-561.
  • [11] Hosseini S.G., Eslami A., Thermoanalytical Investigation of Relative Reactivity of Some Nitrate Oxidants in Tin-fueled Pyrotechnic Systems, J. Therm. Anal. Calorim., 2010, 101(3), 1111-1119.
  • [12] Liu L., Li F., Tan L., Ming L., Yi Y., Effects of Nanometer Ni, Cu, Al and NiCu Powders on the Thermal Decomposition of Ammonium Perchlorate, Propellants Explos. Pyrotech., 2004, 29(1), 34-38.
  • [13] Zhang X., Chen X., Feng M.H., Zheng Z.F., Pan G.P., Lv H.P., Influences of Bulking and Porous Structure on Barium Nitrate as Pyrotechnic Oxidants, Adv. Mater. Res., 2012, 550, 27-31.
  • [14] Brown M.E., Sole K.C., Beck M.W., Isothermal DSC Study of the Thermal Decomposition of Potassium Permanganate, Thermochim. Acta, 1985, 89, 27-37.
  • [15] Pourmortazavi S., Hajimirsadeghi S., Kohsari I., Fathollahi M., Hosseini S., Thermal Decomposition of Pyrotechnic Mixtures Containing Either Aluminium or Magnesium Powder as Fuel, Fuel, 2008, 87(2), 244-251.
  • [16] Lăzăroaie C., Eşanu S., Său C., Petre R., Iordache P.Z., Staikos G., Temperature Measurements of Magnesium- and Aluminium-based Flares, J. Therm. Anal. Calorim., 2014, 115(2), 1407-1415.
  • [17] González O.Q., Burell J.L., Martínez E., Barrera C., Acosta R., Ruiz N., Obtaining, Characterization and Thermal Decomposition of Barium Nitrate, Revista Cubana de Química, 2010, 16(1), 44-52.
  • [18] Rajić M., Sućeska M., Study of Thermal Decomposition Kinetics of Lowtemperature Reaction of Ammonium Perchlorate by Isothermal TG, J. Therm. Anal. Calorim., 2000, 63(2), 375-386.
  • [19] Vyazovkin S., Burnham A.K., Criado J.M., Pérez-Maqueda L.A., Popescu C., Sbirrazzuoli N., ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data, Thermochim. Acta, 2011, 520(1), 1-19.
  • [20] Kissinger H.E., Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 1957, 29(11), 1702-1706.
  • [21] Lehmann B., Karger-Kocsis J., Isothermal and Non-isothermal Crystallisation Kinetics of pCBT and PBT, J. Therm. Anal. Calorim., 2009, 95(1), 221-227.
  • [22] Hatakeyama T., Quinn F., Thermal Analysis: Fundamentals and Applications to Polymer Science, Wiley, 1994, pp.70, ISBN 9780471951032.
  • [23] Vyazovkin S., Wight C.A., Model-free and Model-fitting Approaches to Kinetic Analysis of Isothermal and Nonisothermal Data, Thermochim. Acta, 1999, 340, 53-68.
  • [24] Sunitha M., Reghunadhan Nair C., Krishnan K., Ninan K., Kinetics of Alderene Reaction of Tris (2-allylphenoxy) Triphenoxycyclotriphosphazene and Bismaleimides – a DSC Study, Thermochim. Acta, 2001, 374(2),159-169.
  • [25] Pickard J.M., Critical Ignition Temperature, Thermochim. Acta, 2002, 392, 37-40.
  • [26] Kotoyori T., Critical Ignition Temperatures of Chemical Substances, J. Loss. Prevent. Pro., 1989, 2(1), 16-21.
  • [27] Zhao F., Hu R., Zhang H., Gao H., Zhao H., Ma H., Estimation of Critical Temperature of Thermal Explosion for Energetic Materials Based on Nonisothermal Kinetic Equation dα/dt= A0exp (bT)[1+(T-T0) b]f(α), Chem. Res. Chinese Univ., 2010, 26(5), 829-832.
  • [28] Wu J.T., Zhang J.G., Sun M., Yin X., Zhang T.L., Preparation, Structure and Kinetic Analysis of the Thermal Behavior of Some Energetic Salts of 3-Hydrazino-4-amino-1,2,4-triazole, Cent. Eur. J. Energ. Mater., 2013, 10(4), 481-493.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9b7a20d-dfd3-4b75-92b9-4954b07c89c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.