
MULTI AGENT DEEP LEARNING WITH COOPERATIVE
COMMUNICATION

David Simões1,2,3,∗, Nuno Lau1,2, Luís Paulo Reis3,4

1Electronics, Telecommunications and Informatics Department, University of Aveiro, Portugal

2Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Portugal

3Artificial Intelligence and Computer Science Lab, Oporto, Portugal

4Informatics Engineering Department, Faculty of Engineering of the University of Porto, Portugal

∗E-mail: david.simoes@ua.pt

Submitted: 1st November 2019; Accepted: 26th March 2020

Abstract

We consider the problem of multi agents cooperating in a partially-observable environ-
ment. Agents must learn to coordinate and share relevant information to solve the tasks
successfully. This article describes Asynchronous Advantage Actor-Critic with Com-
munication (A3C2), an end-to-end differentiable approach where agents learn policies
and communication protocols simultaneously. A3C2 uses a centralized learning, dis-
tributed execution paradigm, supports independent agents, dynamic team sizes, partially-
observable environments, and noisy communications. We compare and show that A3C2
outperforms other state-of-the-art proposals in multiple environments.
Keywords: multi-agent systems, deep reinforcement learning, centralized learning

1 Introduction

A multi-agent system (MAS) is defined by an
environment containing multiple interacting enti-
ties. These systems form the basis of most com-
plex systems, and their entities include humans, an-
imals, robots, and software agents. This team of
distributed agents can accomplish tasks that would
be impossible or impractical for a single agent.
Examples can be found in multiple fields, includ-
ing robotics [1], both in small- and swarm-scale,
distributed tracking [2] for military purposes, traf-
fic control in smart cities [3], craft formation [4],
and complex on-line video-games [5, 6]. Mod-
eling agents by hand for environments like these
may prove to be prohibitively complex. Reinforce-
ment learning, on the other hand, has consider-

able potential in such cooperative multi-agent en-
vironments. Agents are often required to run in-
dependently, solely with access to local partial in-
formation [7]. Decentralized agents also allevi-
ate complexity problems by ignoring joint action-
spaces, which grow exponentially with the amount
of agents [8]. However, this makes it harder for
agents to learn implicit coordination, where they as-
sume the behavior of other members of the team,
and act accordingly.

A possible solution is for agents to exchange
information, compensating for their local action-
observation history. Language and communication
between intelligent agents have long been a topic of
intense debate [9]. Through centralized learning,
distributed execution paradigm [10], the learning
phase can take advantage of global information and

JAISCR, 2020, Vol. 10, No. 3, pp. 189 – 207
10.2478/jaiscr-2020-0013

190 David Simões, Nuno Lau, Paulo Reis

error derivatives can be backpropagated through
communication channels in order for agents to im-
prove their teammates’ policies. In practical terms,
this causes agents to learn a communication pro-
tocol that benefits the team, and doing this for all
agents leads to learning coordination among them.

We focus on settings that support centralized
learning, distributed execution and cooperative en-
vironments that require relevant information shar-
ing between agents of a team. This paper describes
Asynchronous Advantage Actor-Critic with Com-
munication (A3C2), a distributed deep reinforce-
ment learning algorithm for cooperative multi-agent
systems. Agents learn policies and communica-
tion protocols simultaneously, and exchange infor-
mation through message-passing during execution.
A3C2 supports noisy communications, distributed
execution, and its agents are shown to achieve state-
of-the-art performance in partially-observable co-
operative environments. Our main contribution is
the description and thorough evaluation of A3C2
in multiple multi-agent environments. It is com-
pared against state-of-the art approaches, achieving
the best results. The repercussions of different com-
munication channels are also studied, including the
effects of increasing the amount of transmitted in-
formation and the impact of introducing noise into
communications.

The remainder of this paper is structured as fol-
lows. Section 2 describes the state-of-the-art on
deep reinforcement learning algorithms in multi-
agent systems. Section 3 describes our proposal,
including our methodology to handle noisy com-
munications. Section 4 describes two multi-agent
environment suites, and Section 5 shows results ob-
tained in those with A3C2 and other state-of-the-art
algorithms. Finally, Section 6 draws conclusions
and lists future work directions.

2 Related Work

The simplest multi-agent reinforcement learn-
ing algorithms rely on applying single-agent algo-
rithms in a multi-agent environment, having each
agent learning independently, as shown in the In-
dependent Q-Learners (IL) algorithm [11]. Theo-
retical convergence guarantees are lost, due to the
non-stationarity of the environment, but the method
is versatile and popular [10, 12, 13, 14].

Another popular approach is the Joint-Action
Learners (JAL) [11], where a central entity decides
the joint-action for all agents based on the joint ob-
servation of the team. This approach is highly re-
strictive, as it does not support decentralized ex-
ecution. In the limit, the environment becomes
single-agent, where all entities are monolithically
controlled.

These methods do not take advantage of the
multi-agent aspect of the environment. This Section
now describes the most relevant multi-agent deep-
learning algorithms in the literature.

2.1 Counterfactual Multi-Agent Policy
Gradients

The Counterfactual Multi-Agent Policy Gra-
dients (COMA) [10] algorithm is an actor-critic
extension that supports distributed execution, but
requires centralized training. This centralized-
learning, distributed-execution framework follows
the intuition that algorithms (the value network, in
this case) can be augmented with extra informa-
tion regarding the other agents during the learning
phase, while during execution only local informa-
tion is required, thus allowing agents to run in a de-
centralized manner. Agents use network sharing for
the critic network, so COMA does not support het-
erogeneous reward functions.

COMA uses the same centralized value network
for all agents, with the shared agent observations
and their actions as input. The use of agent actions
as inputs for the value networks means the environ-
ment is now stationary for the critic, even as policies
change. COMA addresses the credit-assignment
problem by comparing how each agent’s action ef-
fectively affects the expected value (using the critic
network to estimate this).

Since the critic’s architecture depends on the
amount of agents being trained (as it incorporates
their actions and observations), then COMA does
not support dynamic amounts of agents. Using the
same centralized critic for all agents also means the
algorithm does not support different reward func-
tions for different agents. Finally, it is unclear how
the network scales to large numbers of agents.

191David Simões, Nuno Lau, Paulo Reis

error derivatives can be backpropagated through
communication channels in order for agents to im-
prove their teammates’ policies. In practical terms,
this causes agents to learn a communication pro-
tocol that benefits the team, and doing this for all
agents leads to learning coordination among them.

We focus on settings that support centralized
learning, distributed execution and cooperative en-
vironments that require relevant information shar-
ing between agents of a team. This paper describes
Asynchronous Advantage Actor-Critic with Com-
munication (A3C2), a distributed deep reinforce-
ment learning algorithm for cooperative multi-agent
systems. Agents learn policies and communica-
tion protocols simultaneously, and exchange infor-
mation through message-passing during execution.
A3C2 supports noisy communications, distributed
execution, and its agents are shown to achieve state-
of-the-art performance in partially-observable co-
operative environments. Our main contribution is
the description and thorough evaluation of A3C2
in multiple multi-agent environments. It is com-
pared against state-of-the art approaches, achieving
the best results. The repercussions of different com-
munication channels are also studied, including the
effects of increasing the amount of transmitted in-
formation and the impact of introducing noise into
communications.

The remainder of this paper is structured as fol-
lows. Section 2 describes the state-of-the-art on
deep reinforcement learning algorithms in multi-
agent systems. Section 3 describes our proposal,
including our methodology to handle noisy com-
munications. Section 4 describes two multi-agent
environment suites, and Section 5 shows results ob-
tained in those with A3C2 and other state-of-the-art
algorithms. Finally, Section 6 draws conclusions
and lists future work directions.

2 Related Work

The simplest multi-agent reinforcement learn-
ing algorithms rely on applying single-agent algo-
rithms in a multi-agent environment, having each
agent learning independently, as shown in the In-
dependent Q-Learners (IL) algorithm [11]. Theo-
retical convergence guarantees are lost, due to the
non-stationarity of the environment, but the method
is versatile and popular [10, 12, 13, 14].

Another popular approach is the Joint-Action
Learners (JAL) [11], where a central entity decides
the joint-action for all agents based on the joint ob-
servation of the team. This approach is highly re-
strictive, as it does not support decentralized ex-
ecution. In the limit, the environment becomes
single-agent, where all entities are monolithically
controlled.

These methods do not take advantage of the
multi-agent aspect of the environment. This Section
now describes the most relevant multi-agent deep-
learning algorithms in the literature.

2.1 Counterfactual Multi-Agent Policy
Gradients

The Counterfactual Multi-Agent Policy Gra-
dients (COMA) [10] algorithm is an actor-critic
extension that supports distributed execution, but
requires centralized training. This centralized-
learning, distributed-execution framework follows
the intuition that algorithms (the value network, in
this case) can be augmented with extra informa-
tion regarding the other agents during the learning
phase, while during execution only local informa-
tion is required, thus allowing agents to run in a de-
centralized manner. Agents use network sharing for
the critic network, so COMA does not support het-
erogeneous reward functions.

COMA uses the same centralized value network
for all agents, with the shared agent observations
and their actions as input. The use of agent actions
as inputs for the value networks means the environ-
ment is now stationary for the critic, even as policies
change. COMA addresses the credit-assignment
problem by comparing how each agent’s action ef-
fectively affects the expected value (using the critic
network to estimate this).

Since the critic’s architecture depends on the
amount of agents being trained (as it incorporates
their actions and observations), then COMA does
not support dynamic amounts of agents. Using the
same centralized critic for all agents also means the
algorithm does not support different reward func-
tions for different agents. Finally, it is unclear how
the network scales to large numbers of agents.

MULTI AGENT DEEP LEARNING WITH . . .

2.2 Multi-Agent Actor-Critic for Mixed
Cooperative-Competitive Environ-
ments

The Multi-Agent Actor-Critic for Mixed
Cooperative-Competitive Environments (MAD-
DPG) [15] is a DDPG extension that also follows
the centralized-learning, distributed-execution ap-
proach. Similarly to COMA, the algorithm has a
critic network with the shared agent observations
and their actions as input. However, MADDPG
uses a value network for each agent, which allows
for agents with different reward functions to learn
together (any non fully cooperative environment,
for example).

MADDPG can also suffer from scalability is-
sues, and does not support dynamic amounts of
agents. The approach is based on implicit coordi-
nation. The authors compare their work with an IL
version of DDPG on a proposed suite of environ-
ments, known as MPE, and described below.

2.3 Value-Decomposition Networks

Sunehag et al. present Value-Decomposition
Networks (VDN) [16], where agents learn a fac-
torized joint-action value function based on their
independent observations, and the sum of each
agent’s estimation approximates the centralized
joint-action function. Agents can communicate by
concatenating the output of their layers at some
points, thus assuming noiseless communication
without constraints once more. VDN disregards any
additional information available from the environ-
ment, and limits the complexity of the centralized
joint-action function to a simple sum.

Rashid et al. present QMIX [7], a VDN-
extension, where each agent’s value function is
no longer summed to approximate the centralized
joint-action function. Instead, an additional mixing
network is used to combine each individual value
function in a more complex manner, which is also
able to incorporate additional environment informa-
tion. QMIX does not use communication between
agents, and thus relevant information in partially-
observable environments is not shared.

2.4 CommNet

The CommNet algorithm [17] proposes a sin-
gle network in the multi-agent setting, passing the
averaged message over the agent modules between
layers. It uses a fully differentiable communica-
tion channel to learn explicit continuous commu-
nication between agents, learned concurrently with
the agent’s policy. The communication channel at
time-step t is the summed transmission of messages
sent by other agents at time-step t −1, and each en-
vironment state undergoes multiple communication
steps (a value defined a priori).

Allowing multiple cycles of communications
among agents is an uncommon assumption, since in
many environments, actions usually have an equal
or higher rate than message transmissions. Not
only that, but the amount of cycles with which to
communicate with is a hyper-parameter of the al-
gorithm with no intuitive value. The model outputs
actions for all agents simultaneously, similarly to
JAL, which does not support distributed execution
of the policies. It also makes CommNet unable to
handle dynamic numbers of agents with this shared
observation, and it remains unclear how it scales to
large numbers of agents. Finally, the authors as-
sume perfect communication between agents.

2.5 Multi-Agent Bidirectionally Coordi-
nated Network

The Multi-Agent Bidirectionally Coordinated
Network (BiCNet) [18] is an actor-critic extension
based on Minimax-Q [19]. Using as an input the
local view of an agent, and a shared view of all
agents, a policy network outputs the action for an
agent, and a value network the expected Q-value
for that state. Agents are organized in a hierarchi-
cal order, and communicate with their neighbors,
which allows a variable number of agents to use the
same policy. Through the use of the RNN structure
[20], agents have a local memory, and they share
information between them while calculating their
actions, by sharing the RNN state with their neigh-
bors.

It is unclear what are the constraints of this shar-
ing methodology and its robustness when commu-
nication channels can fail. The use of a shared ob-
servation for the policy network is also reminiscent
of JAL, which does not support distributed execu-

192 David Simões, Nuno Lau, Paulo Reis

tion of the policies. It also makes it unclear how the
network handles dynamic numbers of agents with
this shared observation, and how it scales to large
numbers of agents. Finally, requiring RNN struc-
tures in the policy and value networks is a strong re-
quirement, since not all problems require such com-
plex structures, notoriously hard to train [21].

2.6 Differentiable Inter-Agent Learning

The Differentiable Inter-Agent Learning
(DIAL) algorithm [9] uses a Q-network and a neural
network that outputs messages through an end-to-
end differentiable channel. Agents send messages
at each cycle, and these messages are used as inputs
for other agents’ next cycles, along with their state
observations. This approach requires centralized
learning, although authors have also proposed an
experience-replay based approach that supports de-
centralized learning [22]. Gradients are then pushed
through the communication channels in order to op-
timize the messages to send.

The authors discretize the sent messages dur-
ing execution and assume perfect communication
between agents. DIAL is also only demonstrated to
work in a limited set of short-horizon environments.

2.7 Others

Another end-to-end differentiable learning
communication algorithm is found in the methods
of Mordatch et al. [23]. Agents learn to communi-
cate by learning a Gumbel distribution, later used
on a set of discrete symbols, while simultaneously
learning to act in an fully cooperative environment,
using a joint reward function. Policies are based on
neural networks with recurrent modules and sup-
port different numbers of agents. The algorithm
requires fully cooperative environments, and the
authors also assume perfect communication.

Das et al. [24] propose an algorithm for a one-
on-one cooperative game. Using Hierarchical Re-
current Encoder-Decoder neural networks to model
policies, and the REINFORCE algorithm [25] for
learning a communication policy, agents learn to
communicate using a pre-determined vocabulary
consisting of natural-language symbols. Eventu-
ally, one of the agents guesses what image the re-
maining agent was shown.

D’Ambrosio et al. [26] use neural networks to
learn communication in a hive-mind style. Cer-
tain neurons are shared among all agents, and the
network learns how to set the weights in order to
achieve coordination. However, this approach does
not allow agents to run in a distributed manner.

Lazaridou et al. [27] also propose a communi-
cation learning algorithm for agents to use in order
to identify images. In their work, communication
is simply the action space with which policies are
learned to complete tasks.

Some authors also show how communication
can arise in a mix of multi-agent reinforcement
learning frameworks and supervised learning tech-
niques. By training agents to maximize a goal, and
interspersing the training with supervised learning,
Lewis et al. [28] demonstrate agents that learn nat-
ural language protocols. Using dialogue rollouts,
the models plan ahead in bargaining tasks, and fake
interest to take advantage of high-value goals.

The Multi-Step, Multi-Agent Neural Network
(MSMANN) algorithm [29] uses supervised learn-
ing for decentralized agents to learn to imitate a
centralized strategy. Agents learn action and com-
munication policies simultaneously during central-
ized training, despite requiring a JAL strategy to be
learned a priori. Authors leave a reinforcement-
based approach for future work.

A3C2 relies on continuous communication pro-
tocols, based on generic message passing, which
supports both distributed execution, as well as a dy-
namic number of agents during execution. It does
not require any additional information from the en-
vironment, other than the one individually supplied
to each agent.

3 Asynchronous Advantage Actor-
Critic with Communication

Our proposal is based on the Asynchronous
Advantage Actor-Critic (A3C) [30] algorithm, a
single-agent deep reinforcement learning algo-
rithm. Multiple distributed workers keep local
copies of both actor and critic, and asynchronously
update their global versions, as shown in Figure 1.

A3C is on-policy, operates in the forward view,
and uses n-step returns to update both the policy and

193David Simões, Nuno Lau, Paulo Reis

tion of the policies. It also makes it unclear how the
network handles dynamic numbers of agents with
this shared observation, and how it scales to large
numbers of agents. Finally, requiring RNN struc-
tures in the policy and value networks is a strong re-
quirement, since not all problems require such com-
plex structures, notoriously hard to train [21].

2.6 Differentiable Inter-Agent Learning

The Differentiable Inter-Agent Learning
(DIAL) algorithm [9] uses a Q-network and a neural
network that outputs messages through an end-to-
end differentiable channel. Agents send messages
at each cycle, and these messages are used as inputs
for other agents’ next cycles, along with their state
observations. This approach requires centralized
learning, although authors have also proposed an
experience-replay based approach that supports de-
centralized learning [22]. Gradients are then pushed
through the communication channels in order to op-
timize the messages to send.

The authors discretize the sent messages dur-
ing execution and assume perfect communication
between agents. DIAL is also only demonstrated to
work in a limited set of short-horizon environments.

2.7 Others

Another end-to-end differentiable learning
communication algorithm is found in the methods
of Mordatch et al. [23]. Agents learn to communi-
cate by learning a Gumbel distribution, later used
on a set of discrete symbols, while simultaneously
learning to act in an fully cooperative environment,
using a joint reward function. Policies are based on
neural networks with recurrent modules and sup-
port different numbers of agents. The algorithm
requires fully cooperative environments, and the
authors also assume perfect communication.

Das et al. [24] propose an algorithm for a one-
on-one cooperative game. Using Hierarchical Re-
current Encoder-Decoder neural networks to model
policies, and the REINFORCE algorithm [25] for
learning a communication policy, agents learn to
communicate using a pre-determined vocabulary
consisting of natural-language symbols. Eventu-
ally, one of the agents guesses what image the re-
maining agent was shown.

D’Ambrosio et al. [26] use neural networks to
learn communication in a hive-mind style. Cer-
tain neurons are shared among all agents, and the
network learns how to set the weights in order to
achieve coordination. However, this approach does
not allow agents to run in a distributed manner.

Lazaridou et al. [27] also propose a communi-
cation learning algorithm for agents to use in order
to identify images. In their work, communication
is simply the action space with which policies are
learned to complete tasks.

Some authors also show how communication
can arise in a mix of multi-agent reinforcement
learning frameworks and supervised learning tech-
niques. By training agents to maximize a goal, and
interspersing the training with supervised learning,
Lewis et al. [28] demonstrate agents that learn nat-
ural language protocols. Using dialogue rollouts,
the models plan ahead in bargaining tasks, and fake
interest to take advantage of high-value goals.

The Multi-Step, Multi-Agent Neural Network
(MSMANN) algorithm [29] uses supervised learn-
ing for decentralized agents to learn to imitate a
centralized strategy. Agents learn action and com-
munication policies simultaneously during central-
ized training, despite requiring a JAL strategy to be
learned a priori. Authors leave a reinforcement-
based approach for future work.

A3C2 relies on continuous communication pro-
tocols, based on generic message passing, which
supports both distributed execution, as well as a dy-
namic number of agents during execution. It does
not require any additional information from the en-
vironment, other than the one individually supplied
to each agent.

3 Asynchronous Advantage Actor-
Critic with Communication

Our proposal is based on the Asynchronous
Advantage Actor-Critic (A3C) [30] algorithm, a
single-agent deep reinforcement learning algo-
rithm. Multiple distributed workers keep local
copies of both actor and critic, and asynchronously
update their global versions, as shown in Figure 1.

A3C is on-policy, operates in the forward view,
and uses n-step returns to update both the policy and

MULTI AGENT DEEP LEARNING WITH . . .

the value-function every tmax steps or until a termi-
nal state is reached. Actor-Critic methods decouple
the value and policy functions into two separate net-
works. The Critic network with weights θv approx-
imates a value function V (ot ,θv) and estimates the
expected return at a given state ot . The Actor net-
work with weights θa maintains a policy π(at |ot ,θa)
from which action at is sampled for state ot .

Figure 1. The framework for A3C [30], with n
workers. Each worker keep a local copy of the

on-line network, and interacts with its own
environment. Updates are asynchronously
performed on the global on-line and target

networks.

Figure 2. The architecture of an agent j at
time-step t, which sampled observation o j

t and
received messages rc j

t . Each agent has three
separate networks: a policy (or actor) network,
which outputs an action probability π(o j

t ,rc
j
t)

(from which a j
t is sampled); a communication

network, which outputs an outgoing message sc j
t ;

and a value (or critic) network, which outputs a
value estimation V (o j

t).

Our proposal, which we refer to as Asyn-
chronous Advantage Actor-Critic with Communi-
cation (A3C2), is a multi-agent extension of A3C
and allows for communication to be simultaneously
learned alongside agent policies. Agents keep ac-
tor and critic networks, and an additional commu-
nication network with weights θc to output outgo-

ing messages sc j
t , as can be seen in Figure 2. These

messages may be received as rc j
t+1 by other agents

in the following time-step (depending on communi-
cation restrictions and constraints), and are used as
input for their actor networks. During the execution
phase, agents only require the actor and communi-
cation networks.

Each A3C2 worker keeps global networks for
each agent, as can be seen in Figure 3. Workers
copy the global networks into local memory and
each handle an entire environment and set of agents
for that environment. A3C can be framed as a spe-
cific case of A3C2, with a number of agents J = 1
and no communication.

Figure 3. The algorithm architecture, using n
separate workers. Each worker keeps local copies
of each agent’s three networks, and interacts with

its own environment and its separate set of j
agents. As samples are collected in mini-batches,
workers calculate gradients based on their local

networks, asynchronously update the global
networks, and update their copies.

The pseudo-code for A3C2 is shown in Algo-
rithm 1. A worker copies global networks into lo-
cal memory (line 5) and obtains the initial obser-
vation of the environment (line 7). In a loop, the
worker now computes an action and outgoing mes-
sage (lines 10-11). The environment may be par-
tially observable, and each agent’s observation may
be a local partial observation of the environment’s
current state. The worker also creates a record of
the senders and recipients of each received message
(line 12).

Global Networks

Actor

Critic

Worker 1 ...

Environment 1 Environment n

Worker n

Agent j

Actor Network

Critic Network

Comm Network

Value V(si
j)

Policy π(si
j,rci

j)

Message M(si
j,rci

j)

Observation si
j

Message rci
j

Global Networks

...
Agent 0

Actor

Comm

Critic
Agent j

Actor

Comm

Critic

Worker 1

...Agent 0 Agent j
Worker n

...Agent 0 Agent j...

Environment 1 Environment n

194 David Simões, Nuno Lau, Paulo Reis

Actions are executed on the environment (line
14), an action-state reward is obtained for each
agent (line 15), and a new set of observations is
sampled (line 15). After enough steps, or when
a terminal state is reached, the loss of local net-
works is computed (lines 21-30), the gradients de-
rived from the loss are applied to the global net-
works (lines 31-38), and these are then copied back
into local memory (line 5). This process is repeated
until convergence has been found.

A3C2 supports both intra- and inter-agent pa-
rameter sharing. In the intra-agent case, networks
with the same input can be merged, and instead of
optimizing separate networks, each agent optimizes
a single network with multiple output layers. In
inter-agent parameter sharing, homogeneous agents
may share the same actor and communication net-
works, and agents with the same reward function
may share the same critic network. This allows
multiple agents to update the same network, result-
ing in a speed-up of the learning phase.

3.1 Actor Network

The policy network, shown in Figure 4, takes as
input the current time-step’s observation o j

t , as well
as any received messages from other agents rc j

t , and
outputs a probability distribution over the agent’s
action-space.

Algorithm 1 tt
1: t ← 0
2: rc j

0 ← rcinitial for all agents j
3: for iteration T = 0,Tmax do
4: tt
5: tt
6: tstart ← t
7: Sample observation o j

t for all agents j
8: repeat
9: for agent j = 1,J do

10: tt
11: tt
12: tt
13: Take action a j

t for all agents j
14: tt
15: t ← t +1
16: terminal o j

t for all agents j or t −
tstart = tmax

17: for agent j = 1,J do
18: tt
19: Lc ← 0
20: for step i = t −1, tstart do
21: R ← r j

i + γR
22: Value loss L j

vi ←
(R−V (o j

i ,ϑ
j
v))2

23: Actor loss L j
ai ←

logπ(a j
i |o

j
i ,rc j

i ,ϑ
j
a)(R − V (o j

i ,ϑ
j
v)) −

βH(π(a j
i |o

j
i ,rc j

i ,ϑ
j
a))

24: for step i = t, tstart +1 do
25: Received communication

loss L j
rci ←

∂L j
ai

∂rc j
i

26: Map received communi-
cation loss Lrci+1 into sent communication loss
Lsci using communication map mi for all agents

27: for agent j = 1,J do
28: for step i = t −1, tstart

do
29: Accumulate gra-

dients dθ j
c ← dθ j

c +
∂L j

sci

∂ϑ j
c

30: Accumulate gra-

dients dθ j
a ← dθ j

a +
∂L j

ai

∂ϑ j
a

31: Accumulate gra-

dients dθ j
v ← dθ j

v +
∂L j

vi

∂ϑ j
v

32: Update network
weights θ j

a ← θ j
a +ηdθ j

a, θ j
v ← θ j

v +ηdθ j
v, and

θ j
c ← θ j

c +ηdθ j
c for all agents j

Algorithm 2 Learning phase for user i
1: acquire J ≥ 1 reference signatures represented

by the shape and dynamics signals
2: get the parameter describing the tolerance of the

verification process δi > 0
3: determine the base signature (determine jBase∈

[1,J]) represented by reference signals vi, j= jBase

and zi, j= jBase

4: normalize the shape and length of J reference
signatures of user i on the basis of his/her base
signature jBase (signals xi, j= jBase, yi, j= jBase,
vi, j= jBase and zi, j= jBase) - determine X{v}

i , Y{v}
i ,

X{z}
i and Y{z}

i
5: perform the vertical and horizontal evolutionary

partitioning of base signature jBase for P verti-
cal sections and R = 2 horizontal sections (Al-
gorithm 3)

6: store in the database the parameters needed to
verify the test signatures of user i (e.g. from in-
dividual XBest) (Algorithm 8)

=0

16

Algorithm 1 Pseudo-code for a worker thread run-
ning A3C2.
Require: Global shared learning rate η, discount

factor γ, entropy weight β, number of agents J,
network weights θ j

a, network weights θ j
v, net-

work weights θ j
c, batch size tmax, maximum it-

erations Tmax, and default message value rcinitial
Require: Local network weights ϑ j

a, network
weights ϑ j

v, network weights ϑ j
c, and step

counter t
1: t ← 0
2: rc j

0 ← rcinitial for all agents j
3: for iteration T = 0,Tmax do
4: Reset gradients dθ j

a ← 0, dθ j
v ← 0, and

dθ j
c ← 0 for all agents j

5: Synchronize ϑ j
a ← θ j

a, ϑ j
v ← θ j

v, ϑ j
c ← θ j

c for
all agents j

6: tstart ← t
7: Sample observation o j

t for all agents j
8: repeat
9: for agent j = 1,J do

10: Calculate message sc j
t to send with

sc j
t ← M(o j

t ,rc j
t ,ϑ

j
c)

11: Sample action a j
t according to policy

π(a j
t |o

j
t ,rc

j
t ,ϑ

j
a)

12: Map sent communication sc j
t into re-

ceived communication rct+1, and build commu-
nication map mt

13: Take action a j
t for all agents j

14: Sample reward r j
t and new observa-

tion o j
t+1 for all agents j

15: t ← t +1
16: terminal o j

t for all agents j or t −
tstart = tmax

17: for agent j = 1,J do

18: R j =

{
0 for terminal state o j

t

V (o j
t ,ϑ

j
v) otherwise

19: Lc ← 0
20: for step i = t −1, tstart do
21: R ← r j

i + γR
22: Value loss L j

vi ←
(R−V (o j

i ,ϑ
j
v))2

23: Actor loss L j
ai ←

logπ(a j
i |o

j
i ,rc j

i ,ϑ
j
a)(R − V (o j

i ,ϑ
j
v)) −

βH(π(a j
i |o

j
i ,rc j

i ,ϑ
j
a))

24: for step i = t, tstart +1 do
25: Received communication

loss L j
rci ←

∂L j
ai

∂rc j
i

26: Map received communi-
cation loss Lrci+1 into sent communication loss
Lsci using communication map mi for all agents

27: for agent j = 1,J do
28: for step i = t −1, tstart

do
29: Accumulate gra-

dients dθ j
c ← dθ j

c +
∂L j

sci

∂ϑ j
c

30: Accumulate gra-

dients dθ j
a ← dθ j

a +
∂L j

ai

∂ϑ j
a

31: Accumulate gra-

dients dθ j
v ← dθ j

v +
∂L j

vi

∂ϑ j
v

32: Update network
weights θ j

a ← θ j
a +ηdθ j

a, θ j
v ← θ j

v +ηdθ j
v, and

θ j
c ← θ j

c +ηdθ j
c for all agents j

Algorithm 2 Learning phase for user i
1: acquire J ≥ 1 reference signatures represented

by the shape and dynamics signals
2: get the parameter describing the tolerance of the

verification process δi > 0
3: determine the base signature (determine jBase∈

[1,J]) represented by reference signals vi, j= jBase

and zi, j= jBase

4: normalize the shape and length of J reference
signatures of user i on the basis of his/her base
signature jBase (signals xi, j= jBase, yi, j= jBase,
vi, j= jBase and zi, j= jBase) - determine X{v}

i , Y{v}
i ,

X{z}
i and Y{z}

i
5: perform the vertical and horizontal evolutionary

partitioning of base signature jBase for P verti-
cal sections and R = 2 horizontal sections (Al-
gorithm 3)

6: store in the database the parameters needed to
verify the test signatures of user i (e.g. from in-
dividual XBest) (Algorithm 8)

=0

16

195David Simões, Nuno Lau, Paulo Reis

Actions are executed on the environment (line
14), an action-state reward is obtained for each
agent (line 15), and a new set of observations is
sampled (line 15). After enough steps, or when
a terminal state is reached, the loss of local net-
works is computed (lines 21-30), the gradients de-
rived from the loss are applied to the global net-
works (lines 31-38), and these are then copied back
into local memory (line 5). This process is repeated
until convergence has been found.

A3C2 supports both intra- and inter-agent pa-
rameter sharing. In the intra-agent case, networks
with the same input can be merged, and instead of
optimizing separate networks, each agent optimizes
a single network with multiple output layers. In
inter-agent parameter sharing, homogeneous agents
may share the same actor and communication net-
works, and agents with the same reward function
may share the same critic network. This allows
multiple agents to update the same network, result-
ing in a speed-up of the learning phase.

3.1 Actor Network

The policy network, shown in Figure 4, takes as
input the current time-step’s observation o j

t , as well
as any received messages from other agents rc j

t , and
outputs a probability distribution over the agent’s
action-space.

MULTI AGENT DEEP LEARNING WITH . . .

Figure 4. An exemplary architecture of agent j’s
actor network. In this case, the actor aggregates the
observation and the broadcast message of all other
agents as its input. The network’s output layer then

outputs a probability distribution for agent j’s
movement in four possible directions. The output
layer is directly based on the environment’s action

space.

At each time-step t, agent j samples an ac-
tion a j

t based on his policy π(a j
t |o

j
t ,rc

j
t ,θ

j
a). At

each optimization cycle, a mini-batch of sam-
ples is used to optimize the actor network. The
loss L j

at ← logπ(a j
i |o

j
t ,rc

j
i ,ϑ

j
a)(R − V (o j

t ,ϑ
j
v)) −

βH(π(a j
i |o

j
t ,rc

j
i ,ϑ

j
a)) is given by the difference of

the actual returns R and the critic’s expectation
V (o j

t ,ϑ
j
v) applied to the taken action a j

i , and an ad-
ditional entropy factor H with weight β to discour-
age premature convergence.

3.2 Critic Network

The value network, shown in Figure 5, takes
as input the current time-step’s observation o j

t , and
outputs a critic expectation, representing the ex-
pected returns for the current observation.

Figure 5. An exemplary architecture of agent j’s
critic. In this case, the network’s output layer

estimates the value of the current observation o j
t , a

value used for the advantage estimation during
optimization. After the learning phase, the critic

network is no longer necessary.

At each time-step t, agent j obtains a reward
r j

t . The actual returns are calculated, backwards, as
Rt = rt + γRt+1. The final expected return is given

by 0 if the episode is terminal, or by the critic ex-
pectation V (o j

t ,ϑ
j
v) for the last taken observation

o j
t otherwise. At each optimization cycle, the loss

L j
vt ← (R−V (o j

t ,ϑ
j
v))2 is given by the squared dif-

ference of the actual returns R and the critic’s ex-
pectation V (o j

t ,ϑ
j
v).

3.3 Communication Network

The communication network, shown in Fig-
ure 6, takes as input the current time-step’s observa-
tion o j

t , and outputs an n-channel message (a vector
of n values) the agent will send at the current time-
step, and which may be received by others in the
following time-step. Each channel has a continuous
value based on the activation function (if any) of the
communication network’s output layer. For exam-
ple, an 8-node output layer using binary activations
computes single-byte messages.

Figure 6. An exemplary architecture of agent j’s
communication network. In this case, the

network’s output layer uses a binary activation
function and has 8 nodes, generating single-byte

messages. Other output architectures are
supported, including continuous valued messages.
For example, a 10-node layer with tanh activations

outputs a vector with elements xi, i = 1, . . . ,10,
where each element xi → [−1,1].

Each environment defines communication con-
straints and properties, ranging from size to range
properties. Messages can be classified as unreliable
if they are lost with a probability Ploss ̸= 0 or ran-
domly delayed. A standard value rcinitial for a non-
received message is used as the actor network input
for both the initial turn (no agent has sent messages
yet) and when messages are lost. The environ-
ment’s connectivity is based on whether agents send
messages to all other agents (broadcast), spatially
close agents (local broadcast), or specific agents
(unicast).

Agents may output a single message to all re-
ceivers, or distinct messages to each one, and may

Actor Network θa
j

Observation ot
j

H
id

de
n

La
ye

r

Po
lic

y
π t

j

H
id

de
n

La
ye

r

... π (0.7 , 0.3 , 0 , 0)
Message rct

0

Message rct
J

...
for all agents except j

Communication Network θc
j

O
bs

er
va

tio
n

o t
j

H
id

de
n

La
ye

r

8-
no

de
, b

in
ar

y
ac

tiv
at

io
n,

M

es
sa

ge
 s

c t
j

H
id

de
n

La
ye

r

... 0110 1000

Critic θv
j

O
bs

er
va

tio
n

o t
j

H
id

de
n

La
ye

r

O
ut

pu
t L

ay
er

H
id

de
n

La
ye

r

... 0.98

196 David Simões, Nuno Lau, Paulo Reis

receive each message distinctly, or aggregate all
messages as one. This property may affect whether
A3C2 supports dynamic amounts of agents, since
the communication and actor networks’ architec-
ture depends on the sent and received messages.
For example, if the communication network is built
such that agent j sends unique messages to each
member of its team, agent j cannot send messages
to more agents than its expected team size. If, on the
other hand, the team’s size decreases, A3C2 sup-
ports noisy communications and simply handles a
message that was not sent as a lost message.

A3C2 also supports noisy messages, where
Gaussian noise N (0,Vnoise) with Vnoise ̸= 0 affects
each message’s content, which commonly happens
in many wireless analog communication mediums.
Finally, A3C2 handles internal interference, com-
monly found in systems where multiple entities
transmit information through a global transmis-
sion medium (like humans talking aloud, or WiFi),
where messages are sent simultaneously with a
probability Pjumble ̸= 0. In such cases, receivers do
not distinguish between messages, and instead in-
terpret a sum or average of the sent information,
which may prove intelligible, depending on the cho-
sen communication protocol and the amount of in-
terference.

The output of agent j’s communication network
at time-step t is referred to as sc j

t , and received by
other agents in the next time-step as rc j

t+1. At each
optimization cycle, the error of received messages,

is given by L j
rct ←

∂L j
at

∂rc j
t
, representing how received

messages impacted the agent’s policy. The loss Lsct

is then computed as the sum or average of this er-
ror, based on the compiled communication map mt .
In other words, Lsct represents the negative impact
of agent j’s sent messages on the policies of agents
who received its messages. An example can be seen
in Figure 7, where J = 3 agents broadcast their mes-
sages to each other.

The intuition behind this is that an agent j opti-
mizes its sent messages in order to improve the poli-
cies of other agents. By doing this for all agents, a
team learns to output information that is useful for
others, thus learning coordination. The error of a
sent message can be summed, averaged, or other-
wise combined from the gradients of that message,
which were computed by all the agents that have

received it. Summing the error may lead to very
large network updates, while averaging them leads
to safer but slower updates.

Figure 7. Diagram of how broadcast
communication with three agents is performed
across two time-steps (arrow direction), and of

how gradients are propagated backwards
(emphasized lines). Agent 0 sends messages to
Agents 1 and 2, which calculate the gradients of
their policy error with respect to that message.
Those gradients are pushed as the error of the

originally sent message into Agent 0, which uses
them to optimize its Communication network.

4 Testing Environments

A3C2 is tested in two distinct groups of multi-
agent environments, the POC and the MPE suites.
Both are now described.

4.1 POC Suite

The Partially-Observable with Communication
(POC) suite is a group of partially-observable
multi-agent environments we have developed,
where communication is crucial to overcome the
partial observability of the environments.

The scenarios, shown on Figure 8, are:

– Hidden Reward - Four agents. Focus on classic
exploration, and agents need to learn how to ef-
ficiently explore the environment and alert team
members when the target is found.

– Traffic Intersection - Dynamic amount of agents,
total of forty. Close-horizon game, where agents
need to learn to adhere to rules and overcome
multiple indistinguishable intersections.

– Pursuit - Four agents and four hard-coded prey.
Classical benchmark where agents need to ex-
plore and coordinate in order to capture the prey.

Time-step i+1

Agent 2
 Action ai+1

2

Message smi+1
2

Observation si+1
2

Message rci+1
2

Agent 1
 Action ai+1

1

Message smi+1
1

Observation si+1
1

Message rci+1
1

Agent 0
 Action ai+1

0

Message smi+1
0

Observation si+1
0

Message rci+1
0

Time-step i

Agent 2
 Action ai

2

Message smi
2

Observation si
2

Message rci
2

Agent 1
 Action ai

1

Message smi
1

Observation si
1

Message rci
1

Agent 0
 Action ai

0

Message smi
0

Observation si
0

Message rci
0

197David Simões, Nuno Lau, Paulo Reis

receive each message distinctly, or aggregate all
messages as one. This property may affect whether
A3C2 supports dynamic amounts of agents, since
the communication and actor networks’ architec-
ture depends on the sent and received messages.
For example, if the communication network is built
such that agent j sends unique messages to each
member of its team, agent j cannot send messages
to more agents than its expected team size. If, on the
other hand, the team’s size decreases, A3C2 sup-
ports noisy communications and simply handles a
message that was not sent as a lost message.

A3C2 also supports noisy messages, where
Gaussian noise N (0,Vnoise) with Vnoise ̸= 0 affects
each message’s content, which commonly happens
in many wireless analog communication mediums.
Finally, A3C2 handles internal interference, com-
monly found in systems where multiple entities
transmit information through a global transmis-
sion medium (like humans talking aloud, or WiFi),
where messages are sent simultaneously with a
probability Pjumble ̸= 0. In such cases, receivers do
not distinguish between messages, and instead in-
terpret a sum or average of the sent information,
which may prove intelligible, depending on the cho-
sen communication protocol and the amount of in-
terference.

The output of agent j’s communication network
at time-step t is referred to as sc j

t , and received by
other agents in the next time-step as rc j

t+1. At each
optimization cycle, the error of received messages,

is given by L j
rct ←

∂L j
at

∂rc j
t
, representing how received

messages impacted the agent’s policy. The loss Lsct

is then computed as the sum or average of this er-
ror, based on the compiled communication map mt .
In other words, Lsct represents the negative impact
of agent j’s sent messages on the policies of agents
who received its messages. An example can be seen
in Figure 7, where J = 3 agents broadcast their mes-
sages to each other.

The intuition behind this is that an agent j opti-
mizes its sent messages in order to improve the poli-
cies of other agents. By doing this for all agents, a
team learns to output information that is useful for
others, thus learning coordination. The error of a
sent message can be summed, averaged, or other-
wise combined from the gradients of that message,
which were computed by all the agents that have

received it. Summing the error may lead to very
large network updates, while averaging them leads
to safer but slower updates.

Figure 7. Diagram of how broadcast
communication with three agents is performed
across two time-steps (arrow direction), and of

how gradients are propagated backwards
(emphasized lines). Agent 0 sends messages to
Agents 1 and 2, which calculate the gradients of
their policy error with respect to that message.
Those gradients are pushed as the error of the

originally sent message into Agent 0, which uses
them to optimize its Communication network.

4 Testing Environments

A3C2 is tested in two distinct groups of multi-
agent environments, the POC and the MPE suites.
Both are now described.

4.1 POC Suite

The Partially-Observable with Communication
(POC) suite is a group of partially-observable
multi-agent environments we have developed,
where communication is crucial to overcome the
partial observability of the environments.

The scenarios, shown on Figure 8, are:

– Hidden Reward - Four agents. Focus on classic
exploration, and agents need to learn how to ef-
ficiently explore the environment and alert team
members when the target is found.

– Traffic Intersection - Dynamic amount of agents,
total of forty. Close-horizon game, where agents
need to learn to adhere to rules and overcome
multiple indistinguishable intersections.

– Pursuit - Four agents and four hard-coded prey.
Classical benchmark where agents need to ex-
plore and coordinate in order to capture the prey.

MULTI AGENT DEEP LEARNING WITH . . .

– Navigation - Two agents and two landmarks.
Focus on goal assignment, and agents learn how
best to distribute themselves in order to com-
plete the task.

Figure 8. The POC suite. (a) Agents (black) only
know their own position and explore the map until

the reward zone (red) is found. They must then
broadcast that location to remaining agents and
converge on it. (b) Agents (colored) must cross
intersections without colliding. They are given a
desired direction (black arrow), know whether

other vehicles are around them, and are penalized
if they collide (red marker). (c) Predators (red) see
only a small local area, and must chase, surround

and capture the prey (green), which are hard-coded
to run from the closest predator (shown by the blue

line). (d) Agents (black) know the beacons’
coordinates, but not each others’ positions. They

must cover all the beacons (red), and are rewarded
by how close any agent is to each beacon (shown

by the green line)

These environments are performance-oriented
and provide a controlled environment with which
to test multiple aspects of a multi-agent algorithm.
While agents receive observations about the envi-
ronment, it is possible to access the environment’s
underlying state directly, without any additional
computations (aside from those already performed
by the actual environment). This allows algorithms

with the centralized learning, distributed execution
method to augment their learning phase with addi-
tional information in an efficient manner. The en-
vironments are also targeted at cooperative teams,
and built in such a way that a team of agents must
use an information-sharing method to achieve suc-
cessful coordinated strategies. For example, agents
in the Traffic environment must share their intent to
turn in order to avoid collisions.

4.1.1 Hidden Reward

The Hidden Reward challenge consists of sev-
eral agents having to move across a toroidal map
until they find a reward zone. Each agent has a
local partial observation of the environment, with
their own coordinates and whether they’re in that
zone or not. The complete state-space consists of a
concatenation of all the agents’ partial observations.
There’s both a global time limit since the challenge
starts, and a smaller one since any agent finds the re-
ward zone. In other words, agents have some time
to explore the map and find the hidden reward, and
a short time to gather there once it has been found.
Because the time is not enough for a single agent
to fully explore it, this not only forces spread coor-
dinated exploration, but also an alert protocol when
the reward is found.

Agents receive individual rewards each cycle,
0 points if not on the reward zone, and n points if
on the reward zone, where n is the total amount of
agents there, so cooperation is encouraged. At each
time-cycle, agents can move in four directions or
remain in the same position. Agents can broadcast
messages to all other agents. The optimal strategy
is to explore the map until the reward zone is found,
and then broadcast its position to other agents.

4.1.2 Traffic Intersection

The Traffic Intersection simulator consists of
several road intersections, which must be crossed
by multiple vehicles. Each agent has a local par-
tial observation of the environment, knowing their
desired direction and sensing close vehicles. The
complete state-space consists of the positions and
intended directions of all vehicles.

Agents get small penalties for stalling traffic,
big penalties if they crash, and even larger penal-
ties if they crashed without having priority. At each

where agents need to learn to adhere to rules
and overcome multiple indistinguishable inter-
sections.

• Pursuit - Four agents and four hard-coded prey.
Classical benchmark where agents need to ex-
plore and coordinate in order to capture the
prey.

• Navigation - Two agents and two landmarks.
Focus on goal assignment, and agents learn how
best to distribute themselves in order to com-
plete the task.

These environments are performance-oriented and
provide a controlled environment with which to test
multiple aspects of a multi-agent algorithm. While
agents receive observations about the environment,
it is possible to access the environment’s underly-
ing state directly, without any additional computa-
tions (aside from those already performed by the ac-
tual environment). This allows algorithms with the
centralized learning, distributed execution method to
augment their learning phase with additional infor-
mation in an efficient manner. The environments are
also targeted at cooperative teams, and built in such
a way that a team of agents must use an information-
sharing method to achieve successful coordinated
strategies. For example, agents in the Traffic envi-
ronment must share their intent to turn in order to
avoid collisions.

4.1.1 Hidden Reward

The Hidden Reward challenge consists on several
agents having to move across a toroidal map until
they find a reward zone. Each agent has a local par-
tial observation of the environment, with their own
coordinates and whether they’re in that zone or not.
The complete state-space consists on a concatenation
of all the agents’ partial observations. There’s both

(a) Hidden Reward. (b) Traffic Intersection.

(c) Pursuit. (d) Navigation.

Figure 8: The POC suite. (a) Agents (black) only
know their own position and explore the map un-
til the reward zone (red) is found. They must then
broadcast that location to remaining agents and con-
verge on it. (b) Agents (colored) must cross inter-
sections without colliding. They are given a desired
direction (black arrow), know whether other vehicles
are around them, and are penalized if they collide
(red marker). (c) Predators (red) see only a small lo-
cal area, and must chase, surround and capture the
prey (green), which are hard-coded to run from the
closest predator (shown by the blue line). (d) Agents
(black) know the beacons’ coordinates, but not each
others’ positions. They must cover all the beacons
(red), and are rewarded by how close any agent is to
each beacon (shown by the green line).

a global time limit since the challenge starts, and a
smaller one since any agent finds the reward zone.
In other words, agents have some time to explore the

10

198 David Simões, Nuno Lau, Paulo Reis

time-cycle, agents can move forward or remain in
the same position. The communication range of
agents is geographically limited to close vehicles
(agents do not broadcast messages to all others, just
to other agents in the same intersection). The opti-
mal strategy is for a vehicle to inform others at in-
tersections whether it needs to turn or not, and allow
the vehicle with priority to cross the intersection.

4.1.3 Pursuit

The Pursuit game consists of two teams of
agents, where one team must capture the other. The
prey team is hard-coded, has a global vision, and
each prey runs from the closest predator. Predators
have local partial observations of the environment,
sensing a small local area equivalent to less than
10% of the total map and their own global coor-
dinates. The complete state-space consists of the
positions of all predators and prey.

Agents get small penalties as time passes, and
get penalized and randomly placed if they collide.
At each time-cycle, agents can move in four direc-
tions or remain in the same position. Agents can
broadcast messages to all other agents. A high-level
strategy is for predators to explore the map until a
prey is found, and then broadcast the prey’s position
so that all predators can converge and capture it.

4.1.4 Navigation

The Navigation task consists of several agents
having to cover all the beacons spread throughout
the map. Each agent knows only its own position
and the beacon positions. The complete state-space
consists of the positions of all agents and beacons.
There is a time-limit, but the episode ends early if
all beacons are covered.

The team gets points at the end of each time-
limited episode, based on how close an agent was to
each beacon. At each time-cycle, agents can move
in four directions or remain in the same position.
Agents can broadcast messages to all other agents.
The optimal strategy is for each agent to broadcast
its own position and for the team to decide which
agent should cover which beacon.

4.2 Multi-Agent Particle Environment

The Multi-Agent Particle Environment (MPE)
[15] suite is a set of local continuous observation-

and discrete action-space scenarios with simulated
physics, which may incorporate communication.

Figure 9. The MPE suite. (a) Agents (light
colored) know their positions and their ally’s target
landmark (heavy colored). They must shared that
information and converge on their corresponding

targets. (b) The gray agent cannot move and knows
the light blue agent’s target (colored) must cross

intersections without colliding. They are given the
desired direction (black arrow), know whether

other vehicles are around them, and are penalized
if they collide (red marker). (c) Predators (red) see
only a small local area, and must chase, surround

and capture the prey (green), which are hard-coded
to run from the closest predator (shown by the blue

line). (d) Agents (black) know the beacons’
coordinates, but not each others’ positions. They

must cover all the beacons (red), and are rewarded
by how close any agent is to each beacon (shown

by the green line).

The scenarios, shown in Figure 9, include:

– Cooperative Reference - Two allies, three land-
marks. Allies know the target landmark of the
other agent, and not their own, which they are
rewarded for being close to.

– Cooperative Communication - The same as Co-

The scenarios, shown on Figure 9, include:

• Cooperative Reference - Two allies, three land-
marks. Allies know the target landmark of the
other agent, and not their own, which they are
rewarded for being close to.

• Cooperative Communication - The same as
Cooperative Reference, but only one ally can
move, while the other knows its target.

• Cooperative Navigation - N allies and land-
marks. Agents are rewarded by being close to
each landmark.

• Tag Challenge - One adversary, N allies and
landmarks. Allies try to touch as many times
as possible the faster adversary.

In order to successfully complete these tasks,
mechanisms to handle partial-observability are re-
quired. These may range from memory of previ-
ous states to communication protocols. In addition,
some tasks also require strong coordination skills,
and might not be possible to complete within the
context of a single-agent system. We refer the reader
to Lowe et al. [15] for further information.

5 Results

A3C2 is compared against IL and JAL implemen-
tations of A3C. The JAL method gathers the obser-
vations of all agents and outputs a joint-action for
the entire team. However, it could not learn any
successful policy in any POC environment within
reasonable time, and its results are not shown in
the following sections. A3C2 is further compared
with MADDPG, COMA, VDN, and QMIX, state-of-
the-art multi-agent deep reinforcement learning al-
gorithms, all of which are outperformed by A3C2.
We publish a video of learned policies on our repos-
itory, linked below.

(a) Cooperative Refer-
ence.

(b) Cooperative Commu-
nication.

(c) Cooperative Naviga-
tion.

(d) Tag Challenge.

Figure 9: The MPE suite. (a) Agents (light colored)
know their positions and their ally’s target landmark
(heavy colored). They must shared that informa-
tion and converge on their corresponding targets. (b)
The gray agent cannot move and knows the light
blue agent’s target (colored) must cross intersections
without colliding. They are given a desired direc-
tion (black arrow), know whether other vehicles are
around them, and are penalized if they collide (red
marker). (c) Predators (red) see only a small local
area, and must chase, surround and capture the prey
(green), which are hard-coded to run from the closest
predator (shown by the blue line). (d) Agents (black)
know the beacons’ coordinates, but not each others’
positions. They must cover all the beacons (red), and
are rewarded by how close any agent is to each bea-
con (shown by the green line).

12

199David Simões, Nuno Lau, Paulo Reis

time-cycle, agents can move forward or remain in
the same position. The communication range of
agents is geographically limited to close vehicles
(agents do not broadcast messages to all others, just
to other agents in the same intersection). The opti-
mal strategy is for a vehicle to inform others at in-
tersections whether it needs to turn or not, and allow
the vehicle with priority to cross the intersection.

4.1.3 Pursuit

The Pursuit game consists of two teams of
agents, where one team must capture the other. The
prey team is hard-coded, has a global vision, and
each prey runs from the closest predator. Predators
have local partial observations of the environment,
sensing a small local area equivalent to less than
10% of the total map and their own global coor-
dinates. The complete state-space consists of the
positions of all predators and prey.

Agents get small penalties as time passes, and
get penalized and randomly placed if they collide.
At each time-cycle, agents can move in four direc-
tions or remain in the same position. Agents can
broadcast messages to all other agents. A high-level
strategy is for predators to explore the map until a
prey is found, and then broadcast the prey’s position
so that all predators can converge and capture it.

4.1.4 Navigation

The Navigation task consists of several agents
having to cover all the beacons spread throughout
the map. Each agent knows only its own position
and the beacon positions. The complete state-space
consists of the positions of all agents and beacons.
There is a time-limit, but the episode ends early if
all beacons are covered.

The team gets points at the end of each time-
limited episode, based on how close an agent was to
each beacon. At each time-cycle, agents can move
in four directions or remain in the same position.
Agents can broadcast messages to all other agents.
The optimal strategy is for each agent to broadcast
its own position and for the team to decide which
agent should cover which beacon.

4.2 Multi-Agent Particle Environment

The Multi-Agent Particle Environment (MPE)
[15] suite is a set of local continuous observation-

and discrete action-space scenarios with simulated
physics, which may incorporate communication.

Figure 9. The MPE suite. (a) Agents (light
colored) know their positions and their ally’s target
landmark (heavy colored). They must shared that
information and converge on their corresponding

targets. (b) The gray agent cannot move and knows
the light blue agent’s target (colored) must cross

intersections without colliding. They are given the
desired direction (black arrow), know whether

other vehicles are around them, and are penalized
if they collide (red marker). (c) Predators (red) see
only a small local area, and must chase, surround

and capture the prey (green), which are hard-coded
to run from the closest predator (shown by the blue

line). (d) Agents (black) know the beacons’
coordinates, but not each others’ positions. They

must cover all the beacons (red), and are rewarded
by how close any agent is to each beacon (shown

by the green line).

The scenarios, shown in Figure 9, include:

– Cooperative Reference - Two allies, three land-
marks. Allies know the target landmark of the
other agent, and not their own, which they are
rewarded for being close to.

– Cooperative Communication - The same as Co-

MULTI AGENT DEEP LEARNING WITH . . .

operative Reference, but only one ally can move,
while the other knows its target.

– Cooperative Navigation - N allies and land-
marks. Agents are rewarded by being close to
each landmark.

– Tag Challenge - One adversary, N allies and
landmarks. Allies try to touch as many times
as possible the faster adversary.

In order to successfully complete these tasks,
mechanisms to handle partial-observability are re-
quired. These may range from memory of previ-
ous states to communication protocols. In addi-
tion, some tasks also require strong coordination
skills, and might not be possible to complete within
the context of a single-agent system. We refer the
reader to Lowe et al. [15] for further information.

5 Results

A3C2 is compared against IL and JAL imple-
mentations of A3C. The JAL method gathers the
observations of all agents and outputs a joint-action
for the entire team. However, it could not learn any
successful policy in any POC environment within
reasonable time, and its results are not shown in
the following Sections. A3C2 is further compared
with MADDPG, COMA, VDN, and QMIX, state-
of-the-art multi-agent deep reinforcement learning
algorithms, all of which are outperformed by A3C2.
We publish a video of learned policies on our repos-
itory, linked below.

Unless otherwise stated, we used a learning rate
η = 10−4, a future reward discount factor γ = 0.9,
an entropy weight β= 0.01, J = 4 agents, and N = 3
concurrent worker threads. All networks’ initial
random weights were computed with the Glorot ini-
tializer [31] with default parameters, and were op-
timized with the Adam optimizer [32] with default
parameters.

A grid parameter search was used to find the
most adequate network architectures for each en-
vironment, with tests on 1 to 3 layers, and 10 to
120 nodes. We describe the fastest architectures we
found that yielded successful policies, along with
other hyper-parameters, in Table 1.

The chosen learning rate η was also the high-
est and fastest we found that consistently allowed

the networks to converge. The future reward dis-
count factor γ depends on the importance of future
rewards, with 0 leading to policies that focus on
short-term rewards, and 1 focusing on long-term ex-
pected rewards.

5.1 Effects of Communication

The architecture of the communication network
affects the complexity of the learned information
sharing protocol. Different amounts of communi-
cation channels (CC) are tested, demonstrating how
explicitly sharing information with learned proto-
cols can also, improve agent policies. The CC rep-
resent the width of the communication network’s
output layer and the length of sent messages. The
communication network’s output layer is activated
with a hyperbolic tangent function, such that each
CC outputs a continuous value [−1,1].

Figure 10 demonstrates that sharing informa-
tion is vital to complete the tasks in the POC
suite, and teams without communication severely
underperform those with. Within A3C2 teams, a
larger amount of CC often increases the perfor-
mance of a team and speeds up the learning pro-
cess. Abrupt performance increases can be ob-
served when agent policies and communication pro-
tocols converge into a coordinated behavior. This
can be observed in the POC: Hidden Reward envi-
ronment, with 5 CC, around 120k training episodes.

In all scenarios, a single CC provides a notice-
able benefit for the team’s average obtained reward.
For example, in the Traffic Simulator, it is enough
for vehicles to signal their intention to turn and ad-
here to road rules. Unsurprisingly, different popula-
tions learn different protocols, and Figure 11 shows
how it is possible to learn two diametrically oppo-
site protocols in this environment, signaling either
intent to turn, or intent to move forward.

Teams in Hidden Reward learned to explore the
map with a formation that maximized the covered
ground. Agents also broadcast the reward zone’s
position when it was found, and others quickly con-
verged in that position. In the Pursuit game, map
exploration also improves and agents coordinate to
surround and capture prey as soon as any predator
finds it. Finally, teams in Navigation decide and co-
ordinate which agent will cover which beacon.

200 David Simões, Nuno Lau, Paulo Reis

Environment J N γ η CC x
POC: Hidden Reward 4 3 0.95 10−4 20 2
POC: Traffic Simulator 40 3 0.1 10−4 1 2
POC: Pursuit 3 12 0.95 5×10−5 10 6
POC: Navigation 2 3 0.95 10−4 20 4
MPE: Coop Navigation 3 3 0.001 10−4 10 8
MPE: Coop Communication 2 3 0.001 10−4 10 8
MPE: Coop Reference 2 3 0.001 10−4 10 8
MPE: Tag 3 12 0.95 10−4 10 8

Table 1. The hyper-parameters used for the tests conducted in this Section. This table lists the amount of
agents J, the amount of workers N, the future reward discount γ, the learning rate η, the amount of

communication channels (CC), and the layer size modifier x. Critic and actor networks used two fully
connected hidden layers of 20x and 10x nodes activated with a ReLU function. The communication

network used a single hidden layer with 10x nodes activated with a ReLU function, and an output layer of
CC nodes, activated with a hyperbolic tangent function. The non-received message rcinitial default value is

all zeros.

Figure 10. Results of A3C2 with different amounts of CC for the POC suite. The plots represent the
average reward and standard deviation obtained by agents, over training episodes.

(a) POC: Hidden Reward. (b) POC: Traffic Intersection.

(c) POC: Pursuit. (d) POC: Navigation.

Figure 10: Results of A3C2 with different amounts of CC for the POC suite. The plots represent the average
reward and standard deviation obtained by agents, over training episodes.

MPE: Cooperative Navigation MPE: Cooperative Communication
Average Distance # Collisions Average Distance Target Reached

A3C2 0.219 1.223 0.007 99.6%
MADDPG 1.767 0.209 0.133 84.0%

DDPG 1.858 0.375 0.456 32.0%

Table 2: Results of A3C2, MADDPG, and DDPG, for Cooperative Navigation and Cooperative Communi-
cation environments.

15

201David Simões, Nuno Lau, Paulo Reis

Environment J N γ η CC x
POC: Hidden Reward 4 3 0.95 10−4 20 2
POC: Traffic Simulator 40 3 0.1 10−4 1 2
POC: Pursuit 3 12 0.95 5×10−5 10 6
POC: Navigation 2 3 0.95 10−4 20 4
MPE: Coop Navigation 3 3 0.001 10−4 10 8
MPE: Coop Communication 2 3 0.001 10−4 10 8
MPE: Coop Reference 2 3 0.001 10−4 10 8
MPE: Tag 3 12 0.95 10−4 10 8

Table 1. The hyper-parameters used for the tests conducted in this Section. This table lists the amount of
agents J, the amount of workers N, the future reward discount γ, the learning rate η, the amount of

communication channels (CC), and the layer size modifier x. Critic and actor networks used two fully
connected hidden layers of 20x and 10x nodes activated with a ReLU function. The communication

network used a single hidden layer with 10x nodes activated with a ReLU function, and an output layer of
CC nodes, activated with a hyperbolic tangent function. The non-received message rcinitial default value is

all zeros.

Figure 10. Results of A3C2 with different amounts of CC for the POC suite. The plots represent the
average reward and standard deviation obtained by agents, over training episodes.

MULTI AGENT DEEP LEARNING WITH . . .

Figure 11. The evolution of two separate 1-channel communication protocols learned in the Traffic
Simulator environment, using two separate agent populations. The plots represent the output message’s
single channel value across training episodes, when two agents stand at an intersection. The values are

averaged over possible intersection situations (vehicles behind or in front of the agent), and split based on
whether the agent intends to turn or move forward.

5.2 Evaluation in the POC Suite

A3C2 is also compared with COMA, VDN and
QMIX in the POC suite, as shown in Figure 12.
These algorithms rely on centralized critics for co-
ordination, and feature no communication. To com-
pensate for that lack of information sharing, the net-
works use a recurrent layer such that agents can
remember information from their multiple partial
observations of the environment, and their central-
ized critic has access to the underlying environment
state. However, COMA, VDN and QMIX cannot
achieve successful results in any of the environ-
ments.

They match the performance of independent
A3C in the cooperative tasks that can be partially
completed without communication. In the Traffic
Intersection simulator, the amount of agents im-
pacts the performance of algorithms and they are
unable to learn an adequate policy. In the Pur-
suit game, QMIX and COMA agents cannot over-
come the partial-observability of the environment
and the prey constantly elude them. Predators
are only able to learn not to collide with each
other. A3C2 clearly outperforms other state-of-the-
art non-communication algorithms in all these envi-
ronments.

5.3 Evaluation on the MPE Suite

Tests are now conducted on A3C, A3C2,
DDPG, and MADDPG, on the MPE suite. While
this Section summarizes each environment, the
reader is referred to Lowe et al. [15] for further
information. Apart from tag Challenge, all MPE
environments provide instant progressive rewards,
so a future reward discount factor γ = 0.001 is used
in these for simplicity.

Tests conducted on MPE’s Cooperative Com-
munication and Cooperative Navigation evalu-
ate communication and coordination. MADDPG
agents integrate communication as an additional
action-space with a predetermined vocabulary in
these environments. In Cooperative Communica-
tion, one agent behaves as a speaker, and informs a
listener agent of which of L = 3 targets is his. In
Cooperative Navigation, J = 3 agents need to cover
L = 3 available targets.

The performance of teams on these environ-
ments is given by r = ∑L

l −dl −C, where L = 3
is the total amount of landmarks, da is the min-
imum distance of each landmark l to any agent,
and C is the amount of collisions on the environ-
ment. The results are shown in Table 2. In Co-
operative Communication, A3C2 can learn poli-
cies that are more frequently successful and also
achieve shorter distances to the target positions than
DDPG and MADDPG. In the Cooperative Naviga-

Figure 11: The evolution of two separate 1-channel communication protocols learned in the Traffic Simu-
lator environment, using two separate agent populations. The plots represent the output message’s single
channel value across training episodes, when two agents stand at an intersection. The values are averaged
over possible intersection situations (vehicles behind or in front of the agent), and split based on whether
the agent intends to turn or move forward.

MPE’s Tag Challenge does not require sharing in-
formation to achieve successful policies, and a team
can rely solely on implicit coordination. In Coop-
erative Reference, agents know each other’s target
landmarks and must communicate this information
to each other in order to find their own targets. In
Tag Challenge, a team of predators chases a prey that
moves at twice their speed with global map vision
and a continuous observation space.

Because Tag Challenge is an adversarial environ-
ment, we used MADDPG in self-play to learn a
policy for the prey, and then trained A3C, A3C2
and MADDPG against that static policy. Fig-
ure 13 demonstrates the evolution of policies learned
by A3C and A3C2 against MADDPG baselines.
A3C2 agents completed both the proposed tasks with
higher performance than MADDPG, while A3C,
lacking agent communication, was unable to do so
in Cooperative Reference.

5.4 Effects of Communication Noise

We also test the effects of noise in the communi-
cation medium against a baseline where commu-
nication is unhindered. We focus on three major
types of noise, all described above. A probability
of losing a message Ploss = 0.5 represents how of-
ten sent messages are not received by their targets,
covering both lost and delayed messages. Gaus-
sian noise N (0,0.5) represents external interference
in the continuous-valued messages, simulating mes-
sages in analog mediums. Finally, a probability
Pjumble = 0.5 represents how often internal interfer-
ence occurs and agents receive jumbled messages,
instead of distinct ones. We test each individual ef-
fect, and all three simultaneously (shown as ”All”),
and compare the results with a noiseless baseline.

Figure 14 shows that, as expected, noisy com-
munication hinders the team’s performance. Losing
messages is the most disruptive perturbation, while
noise or interference can often be off-set by robust

16

202 David Simões, Nuno Lau, Paulo Reis

Figure 12. Results of COMA, VDN, QMIX, and A3C2 for the POC suite. The plots represent the average
reward obtained by the algorithms, over training steps.

MPE: Cooperative Navigation MPE: Cooperative Communication
Average Distance # Collisions Average Distance Target Reached

A3C2 0.219 1.223 0.007 99.6%
MADDPG 1.767 0.209 0.133 84.0%

DDPG 1.858 0.375 0.456 32.0%

Table 2. Results of A3C2, MADDPG, and DDPG, for Cooperative Navigation and Cooperative
Communication environments.

(a) POC: Hidden Reward. (b) POC: Traffic Intersection.

(c) POC: Pursuit. (d) POC: Navigation.

Figure 12: Results of COMA, VDN, QMIX, and A3C2 for the POC suite. The plots represent the average
reward obtained by the algorithms, over training steps.

communication protocols. Even when all noise types
are enabled, teams outperform teams without any
communication. This demonstrates that some com-
munication is better than no communication at all,
and how A3C2 supports imperfect communication
mediums. Similarly to Figure 10, Noisy and Lossy
communication protocols and policies achieve coor-

dination in the POC: Navigation environment around
150k episodes, which leads to an abrupt performance
increase.

17

203David Simões, Nuno Lau, Paulo Reis

Figure 12. Results of COMA, VDN, QMIX, and A3C2 for the POC suite. The plots represent the average
reward obtained by the algorithms, over training steps.

MPE: Cooperative Navigation MPE: Cooperative Communication
Average Distance # Collisions Average Distance Target Reached

A3C2 0.219 1.223 0.007 99.6%
MADDPG 1.767 0.209 0.133 84.0%

DDPG 1.858 0.375 0.456 32.0%

Table 2. Results of A3C2, MADDPG, and DDPG, for Cooperative Navigation and Cooperative
Communication environments.

MULTI AGENT DEEP LEARNING WITH . . .

tion environment, A3C2 achieves more collisions
but smaller distances, maximizing the rewards ob-
tained by agents.

Tests conducted on MPE’s Cooperative Refer-
ence also evaluate communication and coordina-
tion, but MPE’s Tag Challenge does not require
sharing information to achieve successful policies,
and a team can rely solely on implicit coordination.
In Cooperative Reference, agents know each other’s
target landmarks and must communicate this infor-
mation to each other in order to find their own tar-
gets. In Tag Challenge, a team of predators chases
a prey that moves at twice their speed with global
map vision and a continuous observation space.

Because Tag Challenge is an adversarial envi-
ronment, we used MADDPG in self-play to learn
a policy for the prey, and then trained A3C, A3C2
and MADDPG against that static policy. Figure 13
demonstrates the evolution of policies learned by
A3C and A3C2 against MADDPG baselines. A3C2
agents completed both the proposed tasks with
higher performance than MADDPG, while A3C,
lacking agent communication, was unable to do so
in Cooperative Reference.

5.4 Effects of Communication Noise

We also test the effects of noise in the commu-
nication medium against a baseline where commu-
nication is unhindered. We focus on three major
types of noise, all described above. A probability
of losing a message Ploss = 0.5 represents how of-
ten sent messages are not received by their targets,
covering both lost and delayed messages. Gaussian
noise N (0,0.5) represents external interference in
the continuous-valued messages, simulating mes-
sages in analog mediums. Finally, a probability
Pjumble = 0.5 represents how often internal interfer-
ence occurs and agents receive jumbled messages,
instead of distinct ones. We test each individual ef-
fect, and all three simultaneously (shown as "All"),
and compare the results with a noiseless baseline.

Figure 14 shows that, as expected, noisy com-
munication hinders the team’s performance. Losing
messages is the most disruptive perturbation, while
noise or interference can often be off-set by ro-
bust communication protocols. Even when all noise
types are enabled, teams outperform teams without
any communication. This demonstrates that some

communication is better than no communication at
all, and how A3C2 supports imperfect communi-
cation mediums. Similarly to Figure 10, Noisy
and Lossy communication protocols and policies
achieve coordination in the POC: Navigation envi-
ronment around 150k episodes, which leads to an
abrupt performance increase.

6 Conclusion

This paper describes A3C2, a multi-agent deep
learning algorithm that follows the centralized
learning, distributed execution paradigm. Agents
learn independent policies and communication pro-
tocols simultaneously, achieving state-of-the-art re-
sults in multiple environments. A3C2 supports
dynamic team sizes, noisy communications, and
partially-observable domains. It is compared
against MADDPG, COMA, VDN and QMIX, al-
gorithms that also rely on centralized learning, and
results demonstrate that the learned communication
protocols surpass both centralized value-function
techniques and techniques where a discrete com-
munication alphabet is used as an additional action-
space. A3C2’s source-code and environments are
published at https://github.com/bluemoon93/A3C2.

In the future, integrating centralized value-
functions into A3C2 can help stabilizing and
speeding-up the learning process. The value-
function can also be augmented with additional in-
formation, such as agent actions or messages, to fur-
ther exploit the centralized learning property. Ad-
ditional network architectures can also be explored,
such as the inclusion of recursive layers, allowing
agents to maintain an internal memory, and possible
learning more complex communication protocols.

Acknowledgements

The first author is supported by FCT (Por-
tuguese Foundation for Science and Technology)
under grant PD/BD/113963/2015. This work
was financially supported by: Base Funding -
UIDB/00027/2020 of the Artificial Intelligence and
Computer Science Laboratory – LIACC - funded
by national funds through the FCT/MCTES (PID-
DAC). This research was also supported by IEETA
(UIDB/00127/2020).

204 David Simões, Nuno Lau, Paulo Reis

Figure 13. Results of A3C, A3C2, and MADDPG for Cooperative Reference and Tag Challenge. The
colored plots represent the average reward and standard deviation obtained by A3C and A3C2 agents, and

the dashed plot represent MADDPG agents’ average reward, over training episodes.

Figure 14. Results of the effects of noise for the POC suite. The solid plots represent the average reward
and standard deviation obtained by agents over training episodes. The dashed plot represents the average

reward obtained by agents without communication noise at the end of the learning phase.

(a) MPE: Cooperative Reference. (b) MPE: Tag Challenge.

Figure 13: Results of A3C, A3C2, and MADDPG for Cooperative Reference and Tag Challenge. The
colored plots represent the average reward and standard deviation obtained by A3C and A3C2 agents, and
the dashed plot represent MADDPG agents’ average reward, over training episodes.

6 Conclusion

This paper describes A3C2, a multi-agent deep
learning algorithm that follows the centralized learn-
ing, distributed execution paradigm. Agents learn
independent policies and communication protocols
simultaneously, achieving state-of-the-art results in
multiple environments. A3C2 supports dynamic
team sizes, noisy communications, and partially-
observable domains. It is compared against MAD-
DPG, COMA, VDN and QMIX, algorithms that
also rely on centralized learning, and results demon-
strate that the learned communication protocols sur-
pass both centralized value-function techniques and
techniques where a discrete communication alpha-
bet is used as an additional action-space. A3C2’s
source-code and environments are published at https:
//github.com/bluemoon93/A3C2.

In the future, integrating centralized value-
functions into A3C2 can help stabilizing and
speeding-up the learning process. The value-

function can also be augmented with additional in-
formation, such as agent actions or messages, to fur-
ther exploit the centralized learning property. Ad-
ditional network architectures can also be explored,
such as the inclusion of recursive layers, allowing
agents to maintain an internal memory, and possible
learning more complex communication protocols.

Acknowledgements

The first author is supported by FCT (Portuguese
Foundation for Science and Technology) under grant
PD/BD/113963/2015. This work was financially
supported by: Base Funding - UIDB/00027/2020
of the Artificial Intelligence and Computer Science
Laboratory – LIACC - funded by national funds
through the FCT/MCTES (PIDDAC). This research
was also supported by IEETA (UIDB/00127/2020).

18

(a) POC: Hidden Reward. (b) POC: Traffic Intersection.

(c) POC: Pursuit. (d) POC: Navigation.

Figure 14: Results of the effects of noise for the POC suite. The solid plots represent the average reward
and standard deviation obtained by agents over training episodes. The dashed plot represents the average
reward obtained by agents without communication noise at the end of the learning phase.

References

[1] Maximilian Hüttenrauch, Adrian Šošić, and
Gerhard Neumann. Guided deep reinforcement
learning for swarm systems. arXiv preprint
arXiv:1709.06011, 2017.

[2] Lili Ma and Naira Hovakimyan. Vision-based
cyclic pursuit for cooperative target tracking.
Journal of Guidance, Control, and Dynamics,
36(2):617–622, 2013.

[3] Patrick Mannion, Jim Duggan, and Enda How-
ley. An experimental review of reinforcement

19

205David Simões, Nuno Lau, Paulo Reis

Figure 13. Results of A3C, A3C2, and MADDPG for Cooperative Reference and Tag Challenge. The
colored plots represent the average reward and standard deviation obtained by A3C and A3C2 agents, and

the dashed plot represent MADDPG agents’ average reward, over training episodes.

Figure 14. Results of the effects of noise for the POC suite. The solid plots represent the average reward
and standard deviation obtained by agents over training episodes. The dashed plot represents the average

reward obtained by agents without communication noise at the end of the learning phase.

MULTI AGENT DEEP LEARNING WITH . . .

References
[1] Maximilian Hüttenrauch, Adrian Šošić, and Gerhard

Neumann. Guided deep reinforcement learning for
swarm systems. arXiv preprint arXiv:1709.06011,
2017.

[2] Lili Ma and Naira Hovakimyan. Vision-based cyclic
pursuit for cooperative target tracking. Journal of
Guidance, Control, and Dynamics, 36(2):617–622,
2013.

[3] Patrick Mannion, Jim Duggan, and Enda Howley.
An experimental review of reinforcement learning
algorithms for adaptive traffic signal control. In Au-
tonomic road transport support systems, pages 47–
66. Springer, 2016.

[4] P Skobelev, E Simonova, and A Zhilyaev. Using
multi-agent technology for the distributed manage-
ment of a cluster of remote sensing satellites. Com-
plex Syst: Fundament Appl, 90:287, 2016.

[5] Oriol Vinyals, Timo Ewalds, Sergey Bartunov,
Petko Georgiev, Alexander Sasha Vezhnevets,
Michelle Yeo, Alireza Makhzani, Heinrich Küttler,
John Agapiou, Julian Schrittwieser, et al. Star-
craft ii: A new challenge for reinforcement learning.
arXiv preprint arXiv:1708.04782, 2017.

[6] Jonathan Raiman, Susan Zhang, and Filip Wolski.
Long-term planning and situational awareness in
openai five. arXiv preprint arXiv:1912.06721, 2019.

[7] Tabish Rashid, Mikayel Samvelyan, Chris-
tian Schröder de Witt, Gregory Farquhar, Jakob N.
Foerster, and Shimon Whiteson. QMIX: monotonic
value function factorisation for deep multi-agent
reinforcement learning. CoRR, abs/1803.11485,
2018.

[8] L. Busoniu, R. Babuska, and B. De Schutter. A
comprehensive survey of multiagent reinforcement
learning. Trans. Sys. Man Cyber Part C, 38(2):156–
172, March 2008.

[9] Jakob Foerster, Ioannis Alexandros Assael, Nando
de Freitas, and Shimon Whiteson. Learning to
communicate with deep multi-agent reinforcement
learning. In Advances in Neural Information Pro-
cessing Systems, pages 2137–2145, 2016.

[10] Jakob N Foerster, Gregory Farquhar, Triantafyl-
los Afouras, Nantas Nardelli, and Shimon White-
son. Counterfactual multi-agent policy gradients. In
Thirty-Second AAAI Conference on Artificial Intel-
ligence, 2018.

[11] Caroline Claus and Craig Boutilier. The dy-
namics of reinforcement learning in cooperative

multiagent systems. In Proceedings of the Fif-
teenth National/Tenth Conference on Artificial In-
telligence/Innovative Applications of Artificial In-
telligence, AAAI ’98/IAAI ’98, pages 746–752,
Menlo Park, CA, USA, 1998. American Association
for Artificial Intelligence.

[12] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja,
Ilya Kuzovkin, Kristjan Korjus, Juhan Aru, Jaan
Aru, and Raul Vicente. Multiagent cooperation
and competition with deep reinforcement learning.
PLOS ONE, 12(4):1–15, 04 2017.

[13] Maxim Egorov. Multi-Agent Deep Reinforcement
Learning. Technical report, University of Stanford,
Department of Computer Science, 2016.

[14] Jayesh K Gupta, Maxim Egorov, and Mykel
Kochenderfer. Cooperative multi-agent control us-
ing deep reinforcement learning. In International
Conference on Autonomous Agents and Multiagent
Systems, pages 66–83. Springer, 2017.

[15] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Ope-
nAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive envi-
ronments. In Advances in Neural Information Pro-
cessing Systems, pages 6379–6390, 2017.

[16] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wo-
jciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z.
Leibo, Karl Tuyls, and Thore Graepel. Value-
decomposition networks for cooperative multi-agent
learning based on team reward. In Proceedings of
the 17th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS ’18,
pages 2085–2087, Richland, SC, 2018. International
Foundation for Autonomous Agents and Multiagent
Systems.

[17] Sainbayar Sukhbaatar, Rob Fergus, et al. Learn-
ing multiagent communication with backpropaga-
tion. In Advances in Neural Information Processing
Systems, pages 2244–2252, 2016.

[18] Peng Peng, Quan Yuan, Ying Wen, Yaodong Yang,
Zhenkun Tang, Haitao Long, and Jun Wang. Mul-
tiagent bidirectionally-coordinated nets for learn-
ing to play starcraft combat games. CoRR,
abs/1703.10069, 2017.

[19] Michael L Littman. Markov games as a framework
for multi-agent reinforcement learning. In Proceed-
ings of the eleventh international conference on ma-
chine learning, volume 157, pages 157–163, 1994.

[20] David E Rumelhart, Geoffrey E Hinton, and
Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533,
1986.

206 David Simões, Nuno Lau, Paulo Reis

[21] Razvan Pascanu, Tomas Mikolov, and Yoshua Ben-
gio. On the difficulty of training recurrent neural
networks. In International conference on machine
learning, pages 1310–1318, 2013.

[22] Jakob Foerster, Nantas Nardelli, Gregory Farquhar,
Triantafyllos Afouras, Philip HS Torr, Pushmeet
Kohli, and Shimon Whiteson. Stabilising experience
replay for deep multi-agent reinforcement learning.
In Proceedings of the 34th International Confer-
ence on Machine Learning-Volume 70, pages 1146–
1155. JMLR. org, 2017.

[23] Igor Mordatch and Pieter Abbeel. Emergence
of grounded compositional language in multi-agent
populations. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[24] Abhishek Das, Satwik Kottur, José MF Moura,
Stefan Lee, and Dhruv Batra. Learning coopera-
tive visual dialog agents with deep reinforcement
learning. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2951–2960,
2017.

[25] Ronald J. Williams. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8(3):229–256,
May 1992.

[26] David B D’Ambrosio, Skyler Goodell, Joel
Lehman, Sebastian Risi, and Kenneth O Stanley.
Multirobot behavior synchronization through direct
neural network communication. In International
Conference on Intelligent Robotics and Applica-
tions, pages 603–614. Springer, 2012.

[27] Angeliki Lazaridou, Alexander Peysakhovich, and
Marco Baroni. Multi-agent cooperation and the

emergence of (natural) language. Proceedings of
the International Conference on Learning Represen-
tations, 2017.

[28] Mike Lewis, Denis Yarats, Yann Dauphin, Devi
Parikh, and Dhruv Batra. Deal or no deal? end-to-
end learning of negotiation dialogues. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 2443–2453.
Association for Computational Linguistics, 2017.

[29] Qiyang Li, Xintong Du, Yizhou Huang, Quin-
lan Sykora, and Angela P. Schoellig. Learning of
coordination policies for robotic swarms. CoRR,
abs/1709.06620, 2017.

[30] Volodymyr Mnih, Adria Puigdomenech Badia,
Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu.
Asynchronous methods for deep reinforcement
learning. In International Conference on Machine
Learning, pages 1928–1937, 2016.

[31] Xavier Glorot and Yoshua Bengio. Understand-
ing the difficulty of training deep feedforward neural
networks. In Yee Whye Teh and Mike Titterington,
editors, Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics,
volume 9 of Proceedings of Machine Learning Re-
search, pages 249–256, Chia Laguna Resort, Sar-
dinia, Italy, 13–15 May 2010. PMLR.

[32] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. 3rd Inter-
national Conference for Learning Representations,
San Diego, 2015.

David Simoes obtained a M.Sc. (2015)
in Computer and Telematics Engineer-
ing from the University of Aveiro, Por-
tugal, and is currently a Ph.D. student
in a joint Ph.D. program at the Univer-
sities of Minho, Aveiro and Porto (Por-
tugal). His thesis topic is on learning
coordination in multi-agent systems.
He has worked on simulated humanoid

robots and achieved diff erent ranks in Robocup competitions
including 4 world championships, and has worked in robotic
and simulated maze-solving competitions, winning several
national Micro-Rato competitions. His main research inter-
ests include multi-agent systems, deep learning, and game
theory.

Nuno Lau is Assistant Professor at
Aveiro University, Portugal and Re-
searcher at the Institute of Electronics
and Informatics Engineering of Aveiro
(IEETA), where he leads the Intelligent
Robotics and Systems group (IRIS).
He got his Electrical Engineering De-
gree from Oporto University in 1993, a
DEA degree in Biomedical Engineer-

ing from Claude Bernard University, France, in 1994 and the
Ph.D. from Aveiro University in 2003. His research interests
are focused on Intelligent Robotics, Artifi cial Intelligence,
Multi-Agent Systems and Simulation. Nuno Lau participated
in more than 15 international and national research projects,
having the tasks of general or local coordinator in about half
of them. Nuno Lau won more than 50 scientifi c awards in ro-
botic competitions, conferences (best papers) and education.
He has lectured courses at Ph.D. and M.Sc. levels on Intel-
ligent Robotics, Distributed Artifi cial Intelligence, Computer
Architecture, Programming, etc.

207

Luís Paulo Reis is an Associate Pro-
fessor at the Faculty of Engineering
of the University of Porto in Portugal
and Director of LIACC - Artificial
Intelligence and Computer Science
Laboratory at the same University. He
is an IEEE Senior Member and he was
president of the Portuguese Society for
Robotics and is vice-president of the

Portuguese Association for Artificial Intelligence. During
the last 25 years, he has lectured courses on Artificial Intelli-
gence, Intelligent Robotics, Multi-Agent Systems, Simulation
and Modelling, Games and Interaction, Educational/Serious
Games and Computer Programming. He was the principal in-
vestigator of more than 10 research projects in those areas. He
won more than 50 scientific awards including wining more
than 15 RoboCup international competitions and best papers
at conferences such as ICEIS, Robotica, IEEE ICARSC and
ICAART. He supervised 20 Ph.D. and 102 M.Sc. theses to
completion and is supervising 8 Ph.D. theses.

David Simões, Nuno Lau, Paulo Reis

[21] Razvan Pascanu, Tomas Mikolov, and Yoshua Ben-
gio. On the difficulty of training recurrent neural
networks. In International conference on machine
learning, pages 1310–1318, 2013.

[22] Jakob Foerster, Nantas Nardelli, Gregory Farquhar,
Triantafyllos Afouras, Philip HS Torr, Pushmeet
Kohli, and Shimon Whiteson. Stabilising experience
replay for deep multi-agent reinforcement learning.
In Proceedings of the 34th International Confer-
ence on Machine Learning-Volume 70, pages 1146–
1155. JMLR. org, 2017.

[23] Igor Mordatch and Pieter Abbeel. Emergence
of grounded compositional language in multi-agent
populations. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[24] Abhishek Das, Satwik Kottur, José MF Moura,
Stefan Lee, and Dhruv Batra. Learning coopera-
tive visual dialog agents with deep reinforcement
learning. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2951–2960,
2017.

[25] Ronald J. Williams. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8(3):229–256,
May 1992.

[26] David B D’Ambrosio, Skyler Goodell, Joel
Lehman, Sebastian Risi, and Kenneth O Stanley.
Multirobot behavior synchronization through direct
neural network communication. In International
Conference on Intelligent Robotics and Applica-
tions, pages 603–614. Springer, 2012.

[27] Angeliki Lazaridou, Alexander Peysakhovich, and
Marco Baroni. Multi-agent cooperation and the

emergence of (natural) language. Proceedings of
the International Conference on Learning Represen-
tations, 2017.

[28] Mike Lewis, Denis Yarats, Yann Dauphin, Devi
Parikh, and Dhruv Batra. Deal or no deal? end-to-
end learning of negotiation dialogues. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 2443–2453.
Association for Computational Linguistics, 2017.

[29] Qiyang Li, Xintong Du, Yizhou Huang, Quin-
lan Sykora, and Angela P. Schoellig. Learning of
coordination policies for robotic swarms. CoRR,
abs/1709.06620, 2017.

[30] Volodymyr Mnih, Adria Puigdomenech Badia,
Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu.
Asynchronous methods for deep reinforcement
learning. In International Conference on Machine
Learning, pages 1928–1937, 2016.

[31] Xavier Glorot and Yoshua Bengio. Understand-
ing the difficulty of training deep feedforward neural
networks. In Yee Whye Teh and Mike Titterington,
editors, Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics,
volume 9 of Proceedings of Machine Learning Re-
search, pages 249–256, Chia Laguna Resort, Sar-
dinia, Italy, 13–15 May 2010. PMLR.

[32] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. 3rd Inter-
national Conference for Learning Representations,
San Diego, 2015.

MULTI AGENT DEEP LEARNING WITH . . .

References
[1] Maximilian Hüttenrauch, Adrian Šošić, and Gerhard

Neumann. Guided deep reinforcement learning for
swarm systems. arXiv preprint arXiv:1709.06011,
2017.

[2] Lili Ma and Naira Hovakimyan. Vision-based cyclic
pursuit for cooperative target tracking. Journal of
Guidance, Control, and Dynamics, 36(2):617–622,
2013.

[3] Patrick Mannion, Jim Duggan, and Enda Howley.
An experimental review of reinforcement learning
algorithms for adaptive traffic signal control. In Au-
tonomic road transport support systems, pages 47–
66. Springer, 2016.

[4] P Skobelev, E Simonova, and A Zhilyaev. Using
multi-agent technology for the distributed manage-
ment of a cluster of remote sensing satellites. Com-
plex Syst: Fundament Appl, 90:287, 2016.

[5] Oriol Vinyals, Timo Ewalds, Sergey Bartunov,
Petko Georgiev, Alexander Sasha Vezhnevets,
Michelle Yeo, Alireza Makhzani, Heinrich Küttler,
John Agapiou, Julian Schrittwieser, et al. Star-
craft ii: A new challenge for reinforcement learning.
arXiv preprint arXiv:1708.04782, 2017.

[6] Jonathan Raiman, Susan Zhang, and Filip Wolski.
Long-term planning and situational awareness in
openai five. arXiv preprint arXiv:1912.06721, 2019.

[7] Tabish Rashid, Mikayel Samvelyan, Chris-
tian Schröder de Witt, Gregory Farquhar, Jakob N.
Foerster, and Shimon Whiteson. QMIX: monotonic
value function factorisation for deep multi-agent
reinforcement learning. CoRR, abs/1803.11485,
2018.

[8] L. Busoniu, R. Babuska, and B. De Schutter. A
comprehensive survey of multiagent reinforcement
learning. Trans. Sys. Man Cyber Part C, 38(2):156–
172, March 2008.

[9] Jakob Foerster, Ioannis Alexandros Assael, Nando
de Freitas, and Shimon Whiteson. Learning to
communicate with deep multi-agent reinforcement
learning. In Advances in Neural Information Pro-
cessing Systems, pages 2137–2145, 2016.

[10] Jakob N Foerster, Gregory Farquhar, Triantafyl-
los Afouras, Nantas Nardelli, and Shimon White-
son. Counterfactual multi-agent policy gradients. In
Thirty-Second AAAI Conference on Artificial Intel-
ligence, 2018.

[11] Caroline Claus and Craig Boutilier. The dy-
namics of reinforcement learning in cooperative

multiagent systems. In Proceedings of the Fif-
teenth National/Tenth Conference on Artificial In-
telligence/Innovative Applications of Artificial In-
telligence, AAAI ’98/IAAI ’98, pages 746–752,
Menlo Park, CA, USA, 1998. American Association
for Artificial Intelligence.

[12] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja,
Ilya Kuzovkin, Kristjan Korjus, Juhan Aru, Jaan
Aru, and Raul Vicente. Multiagent cooperation
and competition with deep reinforcement learning.
PLOS ONE, 12(4):1–15, 04 2017.

[13] Maxim Egorov. Multi-Agent Deep Reinforcement
Learning. Technical report, University of Stanford,
Department of Computer Science, 2016.

[14] Jayesh K Gupta, Maxim Egorov, and Mykel
Kochenderfer. Cooperative multi-agent control us-
ing deep reinforcement learning. In International
Conference on Autonomous Agents and Multiagent
Systems, pages 66–83. Springer, 2017.

[15] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Ope-
nAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive envi-
ronments. In Advances in Neural Information Pro-
cessing Systems, pages 6379–6390, 2017.

[16] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wo-
jciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z.
Leibo, Karl Tuyls, and Thore Graepel. Value-
decomposition networks for cooperative multi-agent
learning based on team reward. In Proceedings of
the 17th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS ’18,
pages 2085–2087, Richland, SC, 2018. International
Foundation for Autonomous Agents and Multiagent
Systems.

[17] Sainbayar Sukhbaatar, Rob Fergus, et al. Learn-
ing multiagent communication with backpropaga-
tion. In Advances in Neural Information Processing
Systems, pages 2244–2252, 2016.

[18] Peng Peng, Quan Yuan, Ying Wen, Yaodong Yang,
Zhenkun Tang, Haitao Long, and Jun Wang. Mul-
tiagent bidirectionally-coordinated nets for learn-
ing to play starcraft combat games. CoRR,
abs/1703.10069, 2017.

[19] Michael L Littman. Markov games as a framework
for multi-agent reinforcement learning. In Proceed-
ings of the eleventh international conference on ma-
chine learning, volume 157, pages 157–163, 1994.

[20] David E Rumelhart, Geoffrey E Hinton, and
Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533,
1986.

