PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Developing threat detection and weather impact techniques by AI algorithms to enhance the reliability of FSO/RF system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Free space optical (FSO) and radio frequency (RF) communication systems need artificial intelligence (AI) to increase their reliability against cyber threats, as well as the vagaries of bad weather. This paper presents a new AI-decision layer of operation of a hybrid FSO/RF system what dynamically ensures its security and operational stability in case of environmental (fog/dust) and security (eavesdropping/jamming) threats. The authors’ technique fundamentally juxtaposes fuzzy logic rule-based classification with multi-algorithm machine learning (ML) validation (54 actionable rules k-nearest neighbours (KNN), support vector machine (SVM), artificial neural networks (ANN)) towards 99.9% real-time response optimization, vastly superior to conventional threshold-based applications. To the authors’ knowledge, this is the first architecture to accommodate adaptive channel switching/encryption in the < 0.1 ms latency regime while maintaining the high-speed benefits of FSO. Experimental results show that in terms of accuracy, error rate, and the balance between precision and recall, ANN is superior to KNN and SVM. ANN achieves the highest classification accuracy with the fewest false positive rates. The significance of the results lies in their ability to improve the security and efficiency of hybrid FSO/RF systems in a way that requires minimal human intervention.
Słowa kluczowe
Rocznik
Strony
art. no. e155677
Opis fizyczny
Bibliogr. 37 poz., rys., wykr., tab.
Twórcy
autor
  • Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
autor
  • Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
  • Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
Bibliografia
  • [1] Alhosani, A., Alshehhi, F., Almenhali, M. & Abu Hilal, H. Optical communication advancements in free space and applications of free space orbital technology. J. Inst. Eng. (India) B 106, 805-814 (2024). https://doi.org/10.1007/s40031-024-01137-5.
  • [2] EL-Garhy, S. M., Khalaf, A. A., Aly, M. H. & Abaza, M. Intelligent transportation: a hybrid FSO/VLC-assisted relay system. Opto-Electron. Rev. 30, e144260 (2022). https://doi.org/10.24425/opelre.2022.144260.
  • [3] Aboelala, O., Lee, I. E. & Chung, G. C. A survey of hybrid free space optics (FSO) communication networks to achieve 5G connectivity for backhauling. Entropy 24, 1573 (2022 ). https://doi.org/10.3390/e24111573.
  • [4] Magidi, S. & Jabeena, A. Analysis of hybrid FSO/RF communication system under the effects of combined atmospheric fading and pointing errors. Opt. Quantum Electron. 54, 210 (2022). https://doi.org/10.1007/s11082-022-03586-y.
  • [5] Allaoua, O. et al. Optimizing FSO systems for 6G network using particle swarm optimization. J. Opt. Commun. 2024, 0183 (2024). https://doi.org/10.1515/joc-2024-0183.
  • [6] Khoshafa, M. H. et al. RIS-assisted physical layer security in emerging RF and optical wireless communication systems: A comprehensive survey. IEEE Commun. Surv. Tutor 99, 1-1 (2024). https://doi.org/10.1109/COMST.2024.3487112.
  • [7] Shakir, W. M. R. Physical layer security performance analysis of hybrid FSO/RF communication system. IEEE Access 9, 18948-18961 (2020). https://doi.org/10.1109/ACCESS.2020.3048614.
  • [8] Sefako, T., Yang, F., Song, J., Balmahoon, R. & Cheng, L. A Review of machine learning techniques for optical wireless communication in intelligent transport systems. Intell. Converg. Networks 5, 284-316 (2024). https://doi.org/10.23919/ICN.2024.0019.
  • [9] Ibrahim, M. et al. Anticipating Optical availability in hybrid RF/FSO links using RF beacons and deep learning. IEEE Trans. Mach. Learn. Commun. Netw. 2, 1369-1388 (2024). https://doi.org/10.1109/TMLCN.2024.3457490.
  • [10] Alimi, I. A. & Monteiro, P. P. Revolutionizing free-space optics: A survey of enabling technologies, challenges, trends, and prospects of beyond 5G free-space optical (FSO) communication systems. Sensors 24, 8036 (2024). https://doi.org/10.3390/s24248036.
  • [11] Shao, J., Liu, Y., Du, X. & Xie, T. Adaptive modulation scheme for soft-switching hybrid FSO/RF links based on machine learning. Photonics 11, 404 (2024). https://doi.org/10.3390/photonics11050404.
  • [12] Raj, A. A. B. et al. A review–unguided optical communications: Developments, technology evolution, and challenges. Electronics 12, 1922 (2023). https://doi.org/10.3390/electronics12081922.
  • [13] Jahid, A., Alsharif, M. H. & Hall, T. J. A contemporary survey on free space optical communication: Potentials, technical challenges, recent advances and research direction. J. Netw. Comput. Appl. 200, 103311 (2022). https://doi.org/10.1016/j.jnca.2021.103311.
  • [14] Deka, R., Mishra, V., Ahmed, I., Anees, S. & Alam, M. S. On the performance and optimization of HAPS assisted dual-hop hybrid RF/FSO system. IEEE Access 10, 80976-80988 (2022). https://doi.org/10.1109/ACCESS.2022.3195930.
  • [15] Kumar, S. & Sharma, N. Emerging military applications of free space optical communication technology: A detailed review. J. Phys.: Conf. Ser. 2161, 012011 (2022). https://doi.org/10.1088/1742-6596/2161/1/012011.
  • [16] Esmail, M. A., Ragheb, A. M., Fathallah, H. A., Altamimi, M. & Alshebeili, S. A. 5G-28 GHz signal transmission over hybrid all-optical FSO/RF link in dusty weather conditions. IEEE Access 7, 24404–24410 (2019). https://doi.org/10.1109/ACCESS.2019.2900000.
  • [17] Burkart, N. & Huber, M. F. A survey on the explainability of supervised machine learning. J. Artif. Intell. Res. 70, 245-317 (2021). https://doi.org/10.1613/jair.1.12228.
  • [18] Mohammadpour, R. A., Abedi, S. M., Bagheri, S. & Ghaemian, A. Fuzzy rule-based classification system for assessing coronary artery disease. Comput. Math. Methods Med. 2015, 564867 (2015). https://doi.org/10.1155/2015/564867.
  • [19] Minhas, A. A., Khan, M. S., Henna, S. & Iqbal, M. S. Attenuation-based hybrid RF/FSO link using soft switching. Opt. Eng. 60, 56102 (2021). https://doi.org/10.1117/1.OE.60.5.056102.
  • [20] Ahmadi, H., Gholamzadeh, M., Shahmoradi, L., Nilashi, M. & Rashvand, P. Diseases diagnosis using fuzzy logic methods: A systematic and meta-analysis review. Comput. Methods Programs Biomed. 161, 145-172 (2018). https://doi.org/10.1016/j.cmpb.2018.04.013.
  • [21] Hassan, M. M. et al. Machine learning-based rainfall prediction: Unveiling insights and forecasting for improved preparedness. IEEE Access 11, 132196-132222 (2023). https://doi.org/10.1109/access.2023.3333876.
  • [22] Tumma, Y. & Kappala, V. K. A review on deployment of UAV-FSO system for high-speed communication. IEEE Access 12, 124915-124930(2024). https://doi.org/10.1109/ACCESS.2024.3453918.
  • [23] Zhang. S. Challenges in KNN classification. IEEE Trans. Knowl. Data Eng. 34, 4663-4675 (2021). https://doi.org/10.1109/TKDE.2021.3049250.
  • [24] Jiang, W., Wang, J., Hsiung, K.-L. & Chen, H.-Y. GRNN-based detection of eavesdropping attacks in SWIPT-enabled smart grid wireless sensor networks. IEEE Internet Things J. 11, 37381-37393 (2024). https://doi.org/10.1109/JIOT.2024.3443277.
  • [25] Lonis, Α. Experimental assessment of the atmospheric effects on laser communications on maritime environment. (Amitos University of the Peloponnese I.R, 2023). https://doi.org/10.26263/amitos-1693.
  • [26] Halder, R. K., Uddin, M. N., Uddin, A., Aryal, S. & Khraisat, A. Enhancing K-nearest neighbor algorithm: A comprehensive review and performance analysis of modifications. J. Big Data 11, 113 (2024). https://doi.org/10.1186/s40537-024-00973-y.
  • [27] Cunningham, P. & Delany, S. J. K-nearest neighbour classifiers-a tutorial. ACM Comput. Surv. 54, 1-25 (2021). https://doi.org/10.1145/3459665.
  • [28] Babatunde, K. S. et al. Machine Learning Model for Classifying Free Space Optics Channel Impairments. in 2022 5th Information Technology for Education and Development (ITED) 1-8 (IEEE, 2002).
  • [29] Abdelsalam, N., Al-Kuwari, S. & Erbad, A. Physical layer security in satellite communication: State-of-the-art and open problems. IET Commun. 19, e12830 (2025). https://doi.org/10.1049/cmu2.12830.
  • [30] Chauhan, V. K., Dahiya, K. & Sharma, A. Problem formulations and solvers in linear SVM: A review. Artif. Intell. Rev. 52, 803-855 (2019). https://doi.org/10.1007/s10462-018-9614-6.
  • [31] Khudhair, K. T. et al. Soft Edge Detection by Mamdani Fuzzy Inference of Color Image. in 5th International Conference on Engineering Technology and its Applications (IICETA) 379-383 (IEEE, 2022). https://doi.org/10.1109/IICETA54559.2022.9888456.
  • [32] Kebaili, R., Driz, S. & Fassi, B. Tackling FSO-WDM system challenges with artificial neural networks: A comprehensive analysis. Eurasia Proc. Sci. Technol. Eng. Math. 32, 304-310 (2024). https://doi.org/10.55549/epstem.1602779.
  • [33] Puspitasari, A. A., An, T. T., Alsharif, M. H. & Lee, B. M. Emerging technologies for 6G communication networks: Machine learning approaches. Sensors 23, 7709 (2023). https://doi.org/10.3390/s23187709.
  • [34] Gupta, T. K. & Raza, K. Optimization of ANN architecture: A review on nature-inspired techniques. ML Biosig. Anal. Diag. Imaging 2019, 159-182 (2019). https://doi.org/10.1016/B978-0-12-816086-2.00007-2.
  • [35] Panić, M., Živković, Ž. & Veličković, M. Assessing the impact of the non-economic factors on gdp per capita using MLRA and ANNs. Econ. Comput. Econ. Cybern. Stud. Res. 56, 187-201 (2022). https://doi.org/10.24818/18423264/56.3.22.12.
  • [36] Najjar, F. H. et al. Classification of COVID-19 from X-ray images using GLCM features and machine learning. Mal. J. Fund. Appl. Sci. 19, 389-398 (2023). https://doi.org/10.11113/mjfas.v19n3.2911.
  • [37] Vujović, Ž. Classification model evaluation metrics. Int. J. Adv. Comput. Sci. Appl. 12, 599-606 (2021). https://doi.org/10.14569/IJACSA.2021.0120670.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9abfa3a-6a55-4387-ac00-10b6dcfc3199
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.