PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Application of complex network theory to the recent foreshock sequences of Methoni (2008) and Kefalonia (2014) in Greece

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Seismic hazard evaluation before recent strong main shocks in the area of Greece is attempted using prior seismicity on the basis of earthquake network theory. The connections of earthquake networks are constructed from successive earthquakes and the nodes are represented by cells of normal grids that were considered superimposed on the study areas. The dynamic evolution of the network structure is examined at sliding windows for identifying periods of statistically significant change, i.e., the network structure differentiation from that of a random network, where the structure is characterized by selected network measures, including the index of small-worldness property. By studying the structure of complex earthquake network, a distinct dynamic evolution is revealed, 2 months before the main shock occurrence. Particularly, the network measures, such as clustering coefficient and small-worldness index, tend to increase before and exhibit an abrupt jump at the time of the main shock occurrence, and then slowly decrease and become stable with small variations as before.
Czasopismo
Rocznik
Strony
543--553
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
  • Department of Geophysics, Aristotle University of Thessaloniki, Thessaloníki, Greece
  • Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloníki, Greece
  • Department of Geophysics, Aristotle University of Thessaloniki, Thessaloníki, Greece
Bibliografia
  • 1. Abe S, Suzuki N (2004a) Scale-free network of earthquakes. Europhys Lett 65:581–586
  • 2. Abe S, Suzuki N (2004b) Small-world structure of earthquake network. Phys A 337:357–362
  • 3. Abe S, Suzuki N (2006) Complex-network description of seismicity. Nonlinear Process Geophys 13:145–150
  • 4. Abe S, Suzuki N (2007) Dynamical evolution of clustering in complex network of earthquakes. Eur Phys J B 59:93–97
  • 5. Abe S, Suzuki N (2009) Main shocks and evolution of complex earthquake networks. Braz J Phys 39(2A):428–430
  • 6. Baiesi M, Paczuski M (2004) Scale-free networks of earthquakes and aftershocks. Phys Rev E 69:066106. doi:10.1103/PhysRevE.69.066106
  • 7. Baiesi M, Paczuski M (2005) Complex networks of earthquakes and aftershocks. Nonlinear Process Geophys 12:1–11. doi:10.5194/npg-12-1
  • 8. Barrat A, Barthelemy M, Vespignani A (2008) Dynamical processes on complex networks. Cambridge University Press, United Kingdom, p 361
  • 9. Bath M (1978) Seismic risk in Fennoscandia. Tectono Phys 57:285–295
  • 10. Brillinger D (1982) Some bounds for seismic risk. Bull Seismol Soc Am 72:1403–1410
  • 11. Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58:1583–1606
  • 12. Daskalaki E, Papadopoulos GA, Spiliotis K, Siettos C (2014) Analysing the topology of seismicity in the Hellenic arc using complex networks. J Seismol 18:37–46. doi:10.1007/s10950-013-9398-8
  • 13. Del Genio C, Kim H, Toroczkai Z, Bassler K (2010) Efficient and exact sampling of simple graphs with given arbitrary degree sequence. PLoS One 5(4):e10012
  • 14. Emmert-Streib F, Dehmer M (2010) Influence of the time scale on the construction of financial networks. PLoS One 5(9):e12884
  • 15. Hainzl S, Zöller G, Kurths J (1999) Similar power laws for foreshock and aftershock sequences in a spring-block model for earthquakes. J Geophys Res 104:7243–7254
  • 16. Herrera C, Nava FA, Lomnitz C (2006) Time-dependent earthquake hazard evaluation in seismogenic systems using mixed Markov Chains: an application to the Japan area. Earth Planets Space 58:973–979
  • 17. Howard RA (1971) Dynamic probabilistic systems, 1(2). Wiley, New York
  • 18. Jones LM, Molnar P (1979) Some characteristics of foreshocks and their possible relationship to earthquake prediction and premonitory slip on fault. J Geophys Res 84:3596–3608
  • 19. Kagan Y, Knopoff L (1978) Statistical study of the occurrence of shallow earthquakes. Geophys J R Astr S 55:67–86
  • 20. Kanamori H, Anderson L (1975) Theoretical basis of some empirical relations in seismology. Bull Seismol Soc Am 65(5):1073–1095
  • 21. Karakostas V (2009) Seismicity patterns before strong earthquakes in Greece. Acta Geophys 57(2):367–386. doi:10.2478/s11600-009-0004-y
  • 22. Karakostas V, Papadimitriou E, Mesimeri M, Gkarlaouni C, Paradisopoulou P (2014) The 2014 Kefalonia Doublet (Mw6.1 and Mw6.0), Central Ionian Islands, Greece: Seismotectonic implications along the Kefalonia Transform fault zone. Acta Geophysica 63(1):1–16
  • 23. Lomnitz C (1974) Global tectonics and earthquake risk. Elsevier Scientific Publishing Co, Amsterdam-London-New York
  • 24. Lomnitz C, Nava F (1983) The predictive power of seismic gaps. Bull Seismol Soc Am 73:1815–1824
  • 25. Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296:910–913
  • 26. Molloy M, Reed B (1995) A critical point for random graphs with a given degree sequence. Random Struct Algorithms 6(2–3):161–180
  • 27. Nava FA, Herrera C, Frez J, Glowacka E (2005) Seismic hazard evaluation using Markov chains: application to the Japan area. Pure Appl Geophys 162:1347–1366
  • 28. Newman M (2010) Networks: an introduction. Oxford University Press, New York
  • 29. Newman M, Strogatz S, Watts D (2001) Random graphs with arbitrary degree distributions and their applications. Phys Rev E 64(2):026118
  • 30. Papadopoulos GA, Charalampakis M, Fokaefs A, Minadakis G (2010) Strong foreshock signal preceding the L’Aquila (Italy) earthquake (Mw 6.3) of 6 April 2009. Nat Hazards Earth Syst Sci 10:19–24. doi:10.5194/nhess-10-19
  • 31. Papazachos BC (1975) Foreshocks and earthquake prediction. Tectonophysics 28:213–226
  • 32. Roumelioti Z, Benetatos C, Kiratzi A (2009) The 14 February 2008 earthquake (M6.7) sequence offshore south Peloponnese (Greece): source models of the three strongest events. Tectonophysics 471(1):272–284
  • 33. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52(3):1059–1069
  • 34. Steeples W, Steeples D (1996) Far-field aftershocks of the 1906 earthquake. Bull Seismol Soc Am 86(4):921–924
  • 35. Tsapanos TM, Papadopoulou AA (1999) A discrete Markov model for earthquake occurrence in Southern Alaska and Aleutian Islands. Balk Geophys Soc 2(3):75–83
  • 36. Utsu T (2002) A list of deadly earthquakes in the world: 1500-2000, International Handbook of Earthquake & Engineering Seismology Part A. Academic Press, San Diego, pp 691–717
  • 37. Wang XF, Chen GR (2003) Complex networks: small-world, scale-free and beyond [J]. IEEE circuits and systems magazine 3(1):6–20
  • 38. Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393:440–442
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9a47c29-2284-4e9c-98d3-c968bface6ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.