Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Interpretation of cognitive performance is a paramount pursuit in learning achievements. Cognitive abilities, encompassing attention, memory, decisionmaking, and language comprehension, are recognized on individual’s capacity to navigate in diverse cognitive tasks. In the academic domain, optimal cognitive functioning is essential for effective learning, information retention, and problem-solving. Proficiency in cognitive skills is directly linked to academic success and intellectual development, providing the necessary cognitive tools for processing, and synthesizing complex information. Therefore, this study explores the correlation between event-related potential (ERP) sub-components (P300, N170, N400) to assess the intricacies of cognitive performance. A regularized approach utilizing Spearman’s Rank Correlation Coefficient and Euclidean Distance is employed. Positive correlations reveal consistent relationships among P300, N170, and N400 ranks across ERP waveforms, indicating similar response patterns. Negative correlations denote inverse relationships. Moreover, the theoretical framework focuses on the digital filtering, ensemble averaging, and baseline correction from data contrast discrimination tasks. Findings indicate positive correlations, suggesting higher ERP amplitudes correspond to superior cognitive performance. This tailored and integrated methodology, indicating the correlation between ERP sub-components, contributes to the broader field of neuroscience and informatics, potentially informing cognitive enhancement strategies in education and biomedical analysis.
Wydawca
Czasopismo
Rocznik
Tom
Strony
521--545
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
autor
- Payap University, Department of Information Technology, International College, Super-highway Chiang Mai, Lumpang Road, Amphur Muang Chiang Mai, 50000, Thailand
autor
- Payap University, Department of Information Technology, International College, Super-highway Chiang Mai, Lumpang Road, Amphur Muang Chiang Mai, 50000, Thailand
Bibliografia
- [1] Baker D.H.: Raw ERP Data in CSV Format, osf.io/xu87h, 2019.
- [2] Bentin S., Allison T., Puce A., Perez E., McCarthy G.: Electrophysiological Studies of Face Perception in Humans, Journal of Cognitive Neuroscience, vol. 8(6), pp. 551–565, 1996. doi: 10.1162/jocn.1996.8.6.551.
- [3] Borra D., Bossi F., Rivolta D., Magosso E.: Deep learning applied to EEG sourcedata reveals both ventral and dorsal visual stream involvement in holistic processing of social stimuli, Scientific Reports, vol. 13(1), 7365, 2023. doi: 10.1038/ s41598-023-34487-z.
- [4] Chou W.C., Duann J.R., She H.C., Huang L.Y., Jung T.P.: Explore the Functional Connectivity between Brain Regions During a Chemistry Working Memory Task, PloS One, vol. 10(6), e0129019, 2015. doi: 10.1371/journal.pone.0129019.
- [5] Ciccarelli G., Federico G., Mele G., Di Cecca A., Migliaccio M., Ilardi C.R., Alfano V., Salvatore M., Cavaliere C.: Simultaneous real-time EEG-fMRI neurofeedback: A systematic review, Frontiers in Human Neuroscience, vol. 17, 2023. doi: 10.3389/fnhum.2023.1123014.
- [6] Cremone-Caira A., Vaidyanathan A., Hyatt D., Gilbert R., Clarkson T., Faja S.: Test-retest reliability of the N2 event-related potential in school-aged children with autism spectrum disorder (ASD), Clinical Neurophysiology, vol. 131(2), pp. 406–413, 2020. doi: 10.1016/j.clinph.2019.09.024.
- [7] Dokmanic I., Parhizkar R., Ranieri J., Vetterli M.: Euclidean Distance Matrices: Essential theory, algorithms, and applications, IEEE Signal Processing Magazine, vol. 32(6), pp. 12–30, 2015. doi: 10.1109/MSP.2015.2398954.
- [8] Duncan-Johnson C.C., Donchin E.: On Quantifying Surprise: The Variation of Event-Related Potentials with Subjective Probability, Psychophysiology, vol. 14(5), pp. 456–467, 1977. doi: 10.1111/j.1469-8986.1977.tb01312.x.
- [9] Ebrahimzadeh E., Saharkhiz S., Rajabion L., Oskouei H.B., Seraji M., Fayaz F., Saliminia S., et al.: Simultaneous electroencephalography-functional magnetic resonance imaging for assessment of human brain function, Frontiers in Systems Neuroscience, vol. 16, 934266, 2022. doi: 10.3389/fnsys.2022.934266.
- [10] Emerson: Software Filtering: Windowing – General Analog Concepts. www.ni.com/en/support/documentation/supplemental/06/software-filtering– windowing—general-analog-concepts.html. 2023.
- [11] Finisguerra A., Borgatti R., Urgesi C.: Non-invasive Brain Stimulation for the Rehabilitation of Children and Adolescents with Neurodevelopmental Disorders: A Systematic Review, Frontiers in Psychology, vol. 10, 135, 2019. doi: 10.1155/ 2023/5612061.
- [12] Folstein J.R., Van Petten C.: Influence of cognitive control and mismatch on the N2 component of the ERP: A review, Psychophysiology, vol. 45(1), pp. 152–170, 2008. doi: 10.1111/j.1469-8986.2007.00602.x.
- [13] Galiotta V., Quattrociocchi I., D’Ippolito M., Schettini F., Aric`o P., Sdoia S., Formisano R., et al.: EEG-based Brain-Computer Interfaces for people with Disorders of Consciousness: Features and applications. A systematic review, Frontiers in Human Neuroscience, vol. 16, 2022. doi: 10.3389/fnhum.2022.1040816.
- [14] Harwood V., Kleinman D., Puggioni G., Baron A.: The P300 event-related potential predicts phonological working memory skills in school-aged children, Frontiers in Psychology, vol. 13, 2022. doi: 10.3389/fpsyg.2022.918046.
- [15] Hauke J., Kossowski T.: Comparison of Values of Pearson’s and Spearman’s Correlation Coefficients on the Same Sets of Data, Quaestiones Geographicae, vol. 30(2), pp. 87–93, 2011. doi: 10.2478/v10117-011-0021-1.
- [16] Hileman C.M., Henderson H., Mundy P., Newell L., Jaime M.: Developmental and Individual Differences on the P1 and N170 ERP Sub-Components in Children with and without Autism, Developmental Neuropsychology, vol. 36(2), pp. 214–236, 2011. doi: 10.1080/87565641.2010.549870.
- [17] Horvath A., Szucs A., Csukly G., Sakovics A., Stefanics G., Kamondi A.: EEG and ERP biomarkers of Alzheimer’s disease: a critical review, Frontiers in Bioscience (Landmark Edition), vol. 23(2), pp. 183–220, 2018. doi: 10.2741/4587.
- [18] Intriligator J., Polich J.: On the relationship between EEG and ERP variability, International Journal of Psychophysiology, vol. 20(1), pp. 59–74, 1995. doi: 10.1016/0167-8760(95)00028-Q.
- [19] Itier R.J., Taylor M.J.: N170 or N1? Spatiotemporal Differences between Object and Face Processing Using ERPs, Cerebral Cortex, vol. 14(2), pp. 132–142, 2004. doi: 10.1093/cercor/bhg111.
- [20] Kappenman E.S., Luck S.J. (eds.): The Oxford Handbook of Event-Related Potential Components, Oxford University Press, 2011. doi: 10.1093/oxfordhb/ 9780195374148.001.0001.
- [21] Karamacoska D., Butt A., Leung I.H.K., Childs R.L., Metri N.J., Uruthiran V., Tan T., et al.: Brain Function Effects of Exercise Interventions for Cognitive Decline: A Systematic Review and Meta-analysis, Frontiers in Neuroscience, vol. 17, 1127065, 2023. doi: 10.3389/fnins.2023.1127065.
- [22] Kayser J., Tenke C.E.: Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: II. Adequacy of low-density estimates, Clinical Neurophysiology, vol. 117(2), pp. 369–380, 2006. doi: 10.1016/j.clinph.2005.08.033.
- [23] Kutas M., Federmeier K.D.: Thirty Years and Counting: Finding Meaning in the N400 Component of the Event-Related Brain Potential (ERP), Annual Review of Psychology, vol. 62, pp. 621–647, 2011. doi: 10.1146/annurev. psych.093008.131123.
- [24] Lopez K.L., Monachino A.D., Vincent K.M., Peck F.C., Gabard-Durnam L.J.: Stability, change, and reliable individual differences in electroencephalography measures: A lifespan perspective on progress and opportunities, NeuroImage, vol. 275, 120116, 2023. doi: 10.1016/j.neuroimage.2023.120116.
- [25] Luck S.J.: An Introduction to the Event-Related Potential Technique, The MIT Press, 2005.
- [26] Lumsden J., Edwards E.A., Lawrence N.S., Coyle D., Munaf`o M.R.: Gamification of Cognitive Assessment and Cognitive Training: A Systematic Review of Applications and Efficacy, JMIR Serious Games, vol. 4(2), e11, 2016. doi: 10.2196/games.5888.
- [27] Madhulatha T.S.: An Overview on Clustering Methods, IOSR Journal of Engineering, vol. 2(4), pp. 719–725, 2012. doi: 10.9790/3021-0204719725.
- [28] Mc Ardle R., Del Din S., Galna B., Thomas A., Rochester L.: Differentiating dementia disease subtypes with gait analysis: feasibility of wearable sensors?, Gait Posture, vol. 76, pp. 372–376, 2020. doi: 10.1016/j.gaitpost.2019.12.028.
- [29] Picton T.W.: The P300 Wave of the Human Event-Related Potential, Journal of Clinical Neurophysiology, vol. 9(4), pp. 456–479, 1992. doi: 10.1097/00004691- 199210000-00002.
- [30] Polich J.: Updating P300: An integrative theory of P3a and P3b, Clinical Neurophysiology, vol. 118(10), pp. 2128–2148, 2007. doi: 10.1016/j.clinph.2007.04.019.
- [31] Pyc M.A., Rawson K.A.: Testing the retrieval effort hypothesis: Does greater difficulty correctly recalling information lead to higher levels of memory?, Journal of Memory and Language, vol. 60(4), pp. 437–447, 2009. doi: 10.1016/ j.jml.2009.01.004.
- [32] Salehzadeh R., Soylu F., Jalili N.: A comparative study of machine learning methods for classifying ERP scalp distribution, Biomedical Physics & Engineering Express, vol. 9(4), 045027, 2023. doi: 10.1088/2057-1976/acdbd0.
- [33] Stoyell S.M., Wilmskoetter J., Dobrota M., Chinappen D.M., Bonilha L., Mintz M., Brinkmann B.H., et al.: High Density EEG in Current Clinical Practice and Opportunities for the Future, Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society, vol. 38(2), pp. 112–123, 2021. doi: 10.1097/WNP.0000000000000807.
- [34] Toffolo K.K., Freedman E.G., Foxe J.J.: Evoking the N400 Event-related Potential (ERP) Component Using a Publicly Available Novel Set of Sentences with Semantically Incongruent or Congruent Eggplants (Endings), Neuroscience, vol. 501, pp. 143–158, 2022. doi: 10.1016/j.neuroscience.2022.07.030.
- [35] Whelan R., Barbey F.M., Cominetti M.R., Gillan C.M., Rosick´a A.M.: Developments in scalable strategies for detecting early markers of cognitive decline, Translational Psychiatry, vol. 12(1), 473, 2022. doi: 10.1038/s41398-022-02237-w.
- [36] Wlotko E.W., Lee C.L., Federmeier K.D.: Language of the Aging Brain: Event-Related Potential Studies of Comprehension in Older Adults, Language and Linguistics Compass, vol. 4(8), pp. 623–638, 2010. doi: 10.1111/j.1749- 818X.2010.00224.x.
- [37] Woodman G.F.: A brief introduction to the use of event-related potentials in studies of perception and attention, Attention, Perception & Psychophysics, vol. 72(8), pp. 2031–2046, 2010. doi: 10.3758/APP.72.8.2031.
- [38] Yadav H., Maini S.: Electroencephalogram based brain-computer interface: applications, challenges, and opportunities, Multimedia Tools and Applications, vol. 82, pp. 47003–47047, 2023. doi: 10.1007/s11042-023-15653-x.
- [39] Yener G., H¨unerli-G¨und¨uz D., Yıldırım E., Akt¨urk T., Ba¸sar-Ero˘glu C., Bonanni L., Del Percio C., et al.: Treatment effects on event-related EEG potentials and oscillations in Alzheimer’s disease, International Journal of Psychophysiology, vol. 177, pp. 179–201, 2022. doi: 10.1016/j.ijpsycho.2022.05.008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9a356e8-f2c8-4c02-8676-f96ea7b6be71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.