PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Metal expansion joints manufacturing by a mechanically assisted laser forming hybrid method – concept

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the concept of metal expansion joints manufacturing using a mechanically assisted laserforming hybrid method. The metal expansion joints are made of a metal tube of an appropriate diameter and wall thickness with a combined bellow-lens shape. The concept assumes using a CO2 laser to implement such expansion joints. The laser beam heats the selected area of the rotating tube, mounted on a swivel handle on one side and the actuator handle on the other end. After reaching the plasticising temperature, the actuator compresses the element. As a result, a bellow-lens shape is formed at the plasticization area. Initial experimental studies confirmed the validity of the concept. The bellow-lens metal expansion joint (type DN20) was obtained as a final result. The presented idea and the element manufacturing method were submitted to The Patent Office of RP.
Rocznik
Strony
art. no. e2022008
Opis fizyczny
Bibliogr. 21 poz., il., tab.
Twórcy
autor
  • Faculty of Mechatronics and Mechanical Engineering, Kielce University of Techn
  • Faculty of Mechatronics and Mechanical Engineering, Kielce University of Techn
Bibliografia
  • 1. Antoszewski, B., Danielewski, H., Dutkiewicz, J., Rogal, L., Węglowski, M.S., Kwieciński, K., Śliwiński, P. (2021). Semi-Hybrid CO2 Laser Metal Deposition Method with Inter Substrate Buffer Zone. Materials, Vol. 13: 1-14.
  • 2. Antoszewski, B., Sęk, P. (2015). Influence of laser beam intensity on geometry parameters of a single surface texture element. Archives of Metallurgy and Materials, Vol. 60: 2215-2219.
  • 3. Banak, R., Mościcki, T., Tofil, S., Antoszewski B. (2017). Laser Welding of a Spark Plug Electrode: Modelling the Problem of Metals with Disparate Melting Points. Lasers in engineering, Vol. 38: 267-281.
  • 4. Bechtold, P., Schmidt, M. (2007). Non-thermal Micro Adjustment Using Ultrashort Laser Pulses, JLMN-Journal of Laser Micro/Nanoengineering, Vol. 2, No. 3: 183-188.
  • 5. Birnbaum, A.J., Yao, Y.L. (2006). The Effects of Laser Forming on Superelastic NiTi Shape Memory Alloys. (In) NSF under DMI-0355432, Columbia University.
  • 6. Carey, C., Cantwell, W.J., Dearden, G., Edwards, K.R., Edwardson, S.P., Watkins, K.G. (2007). Low Power Laser Forming of Glass Fibre Based Fibre Metals Laminates. (In) Proceedings of LANE 2007 (Laser Assisted Net Shape Engineering 5) (pp. 645-655). Erlangen: Meisenbach.
  • 7. Danielewski, H., Meško, J., Nigrovič, R., Nikolić, R.R., Hadzima, B., Gubeljak, N. (2020). Laser cutting of ductile cast iron. Materials Testing, Vol. 62: 820-826.
  • 8. Kurp, P. (2018). Mechanically-assisted laser forming of flat thin beams made of Inconel 627 and Inconel 718 alloys. Materials Research Proceedings, Vol. 5: 25-30.
  • 9. Li, W., Yao, Y.L. (2001). Laser Bending of Tubes: Mechanism, Analysis, and Prediction. Journal of Manufacturing Science and Engineering, 674-681.
  • 10. Nowakowski, L., Wijas, M. (2016). The evaluation of the process of surface regeneration after laser cladding and face milling. Engineering mechanics, 430-433.
  • 11. Nowakowski, L., Wijas, M. (2017). Finishing surface after regeneration with laser cladding. Proceedia Engineering Transcom 2017, Vol. 192: 1012-1015.
  • 12. Palmer, J.A., Knorovsky, G.A., MacCallum, D.O., Steyskal, M., Scherzinger, W.M., Wong, C.C., Lehecka, T.M. (2006). Laser Based Micro Forming and Assembly (In) Sandia Report SAND 2006 (pp. 7239). Albuquerque: Sandia National Laboratories.
  • 13. Radek, N., Pietraszek, J., Antoszewski, B. (2014). The average friction coefficient of laser textured surfaces of silicon carbide identified by RSM methodology. Advanced Materials Research, 874: 29-34.
  • 14. Safdar, S., Li, L., Sheikh, M.A., Liu, Z. (2007). Finite element simulation of laser tube bending: Effect of scanning schemes on bending angle, distortions and stress distribution. Optics & Laser Technology, Vol. 39: 1101-1110.
  • 15. Shi, Y., Shen, H., Yao, Z., Hu, J. (2007). Temperature gradient mechanism in laser forming of thin plates. Optics & Laser Technology, Vol. 39, Issue 4: 858-863.
  • 16. Silve, S. (2009). Multiple meanings in transdisciplinary collaboration: Using laser forming for a community arts sculpture. (In) 8th European Academy of Design Conference, Aberdeen: The Robert Gordon University.
  • 17. Standards of the Expansion Joint Manufacturers Association, Tenth Edition 10th EJMA.
  • 18. Tofil, S., Danielewski, H., Witkowski, G., Mulczyk, K., Antoszewski, B. (2021). Technology and Properties of Peripheral Laser-Welded Micro-Joints. Materials, Vol. 14: 1-16.
  • 19. Vollertsen, F. (1994). Mechanisms and Models for Laser Forming. (In) Laser Assisted Net Shape Engineering, Proceedings of the LANE’94 (pp. 345-360), Bamberg: Meisenbach-Verlag.
  • 20. Widłaszewski, J., Nowak, M., Nowak, Z., Kurp, P. (2019). Laser-assisted thermomechanical bending of tube profiles. Archives of Metallurgy and Materials, Vol. 64: 421-430.
  • 21. Witkowski, G., Tofil, S., Mulczyk, K. (2020). Effect of laser beam trajectory on pocket geometry in laser micromachining. Open Engineering, Vol. 1: 830-838.
Uwagi
Section "Mechanics"
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c99d30b9-2812-40ef-adcb-62a8258cf391
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.