PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Background donor concentration in HgCdTe

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Studies of background donor concentration (BDC) in HgCdTe samples grown with different types of technology were performed with the use of ion milling as a means of eliminating the compensating acceptors. In bulk crystals, films grown with liquid phase epitaxy and films fabricated with molecular beam epitaxy (MBE) on Si substrates, BDC of the order of ~10¹⁴ cm⁻³ was revealed. Films grown with metal-organic chemical vapour deposition and with MBE on GaAs substrates showed BDC of the order of ~10¹⁵ cm⁻³. A possibility of assessing the BDC in acceptor (arsenic)-doped HgCdTe was demonstrated. In general, the studies showed the effectiveness of ion milling as a method of reducing electrical compensation in n-type MCT and as an excellent tool for assisting evaluation of BDC.
Słowa kluczowe
Twórcy
autor
  • R&D Institute for Materials SRC “Carat”, Lviv, 79031, Ukraine
  • National Research Tomsk State University, Tomsk, 634050, Russia
  • Ioffe Institute, St. Petersburg, 194021, Russia
  • ITMO University, St. Petersburg, 197101, Russia
  • National Research Tomsk State University, Tomsk, 634050, Russia
  • National Research Tomsk State University, Tomsk, 634050, Russia
  • P. Sahaydachnyi Army Academy, Lviv, 79012, Ukraine
  • Institute of Physics, Rzeszow University, Rzeszow, 35-310, Poland
  • National Research Tomsk State University, Tomsk, 634050, Russia
  • A.V. Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
Bibliografia
  • 1. P.P. Martyniuk, M. Kopytko, and A. Rogalski, “Barrier infrared detectors”, Opto-Electron. Rev. 22, 127-146 (2014).
  • 2. P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, and A. Rogalski, “New concepts in infrared photodetector designs”, Appl. Phys. Rev. 1, 041102 (2014).
  • 3. A.M. Itsuno, J.D. Phillips, and S. Velicu, “Predicted performance improvement of Auger-suppressed HgCdTe photodiodes and p-n heterojunction detectors”, IEEE Trans. Electron. Dev. 58, 501-507 (2011).
  • 4. M. Kinch, “The future of infrared; III-Vs or HgCdTe?”, J. Electron. Mater. 44, DOI: 10.1007/s 11664-015-3717-5 (2015).
  • 5. P. Capper, “A review of impurity behaviour in bulk and epitaxial Hg1-xCdxTe”, J. Vac. Sci. Technol. В 9, 1667-1681 (1991).
  • 6. P. Capper, E.S. O’Keefe, C. Maxey, D. Dutton, P. Mackett, C. Butler, and I. Gale, “Matrix and impurity element distributions in CdHgTe (CMT) and (Cd,Zn)(Te,Se) compounds by chemical analysis”, J. Cryst. Growth 161, 104-118 (1996).
  • 7. D. Shaw and P. Capper, “Conductivity Type Conversion”, in “Mercury Cadmium Telluride: Growth, Properties and Applications”, ed. by P. Capper, Wiley Series in Materials for Electronic and Optoelectronic Applications, P. Capper, S. Kasap, A. Willoughby, eds., J. Wiley & Sons, p. 297, Chichester, 2011.
  • 8. M.A. Berding, M. van Schilfgaarde, and A. Sher, “First-principles calculation of native defect densities in Hg0.8Cd0.2Te”, Phys. Rev. В 1, 1519-1534 (1994).
  • 9. H.R. Vydyanath, “Incorporation of dopants and native defects in bulk Hg1-xCdxTe crystals and epitaxial layers”, J. Cryst. Growth 161, 64-72 (1996).
  • 10. V.S. Varavin, V.V. Vasiliev, S.A. Dvoretsky, N.N. Mikhailov, V.N. Ovsyuk, Yu.G. Sidorov, A.O. Suslyakov, M.V. Yakushev, and A.L. Aseev, “HgCdTe epilayers on GaAs: growth and devices”, Opto-Electron. Rev. 11, 99-111 (2003).
  • 11. P. Capper, C.D Maxey, C.L. Jones, J.E. Gower, E.S. O’Keefe, and D. Shaw, “Low temperature thermal annealing effects in bulk and epitaxial CdxHg1-xTe”, J. Electron. Mater. 28, 2637-648 (1999).
  • 12. D. Shaw and P. Capper, “Conductivity type conversion in Hg1-xCdxTe”, J. Mater. Sci.: Mater, in Electron. 11, 169-177 (2000).
  • 13. M. Pociask, I. I. Izhnin, A.I. Izhnin, S.A. Dvoretsky, N.N. Mikhailov, Yu. G. Sidorov, V.S. Varavin, and K.D. Mynbaev, “Donor doping of HgCdTe for LWIR and MWIR structures fabricated with ion milling”, Semicond. Sci. Technol. 24, 025031 (2009).
  • 14. V. Srivastav, R. Pal, and H.P. Vyas, “Overview of etching technologies used for HgCdTe”, Opto-Electron. Rev. 13, 197-211 (2005).
  • 15. V.V. Bogoboyashchyy, A.I. Elizarov, and I.I. Izhnin, “Conversion of conductivity type in Cu-doped Hg0.8Cd0.2Te crystals under ion beam milling”, Semicond. Sci. Technol. 20, 726-732 (2005).
  • 16. G.L. Destefanis, “Electrical doping of HgCdTe by ion implantation and heat treatment”, J. Cryst. Growth 86,700-722 (1988).
  • 17. V.V. Bogoboyashchyy, I.I. Izhnin, K.D. Mynbaev, M. Pociask, and A.P. Vlasov, “Relaxation of electrical properties of n-type layers formed by ion milling in epitaxial HgCdTe doped with V-group acceptors”, Semicond. Sci. Technol. 21, 1144-1149 (2006).
  • 18. F.F. Sizov, I.I. Izhnin, and V.V. Bogoboyashchyy, “Electrical characteristics relaxation of ion milled MCT layers”, Proceed. SPIE 5881, 5881OU (2005).
  • 19. V.V. Bogoboyashchyy, I.I. Izhnin, M. Pociask, K.D. Mynbaev, and V.I. Ivanov-Omskii, “Conduction type conversion in ion etching of Au- and Ag-doped narrow-gap HgCdTe single crystals”, Semiconductors 41, 804-809 (2007).
  • 20. V.V. Bogoboyashchyy, I.I. Izhnin, and K.R. Kurbanov, UA Patent No. UA 54476 (2003).
  • 21. P. Capper, "Liquid Phase Epitaxy of MCT" in "Mercury Cadmium Telluride: Growth, Properties and Applications", ed. by P. Capper, Wiley Series in Materials for Electronic and Optoelectronic Applications, P. Capper, S. Kasap, A. Willoughby, eds., J. Wiley & Sons, p. 75, Chichester, 2011.
  • 22. I.I. Izhnin, I.A. Denisov, N.A. Smirnova, M. Pociask, and K.D. Mynbaev, “Ion milling-assisted study of defect structure of HgCdTe films grown by liquid phase epitaxy”, Opto-Electron. Rev. 18, 328-331 (2010).
  • 23. I.I. Izhnin, A.I. Izhnin, H.V. Savytskyy, O.I. Fitsych, N.N. Mikhailov, V.S. Varavin, S.A. Dvoretsky, Yu.G. Sidorov, and K.D. Mynbaev, “Defects in HgCdTe grown by molecular beam epitaxy on GaAs substrates”, Opto-Electron. Rev. 20, 375-378 (2012).
  • 24. C.R. Becker, T.N. Casselman, C.H. Grein, S. Sivananthan, “Molecular Beam Epitaxy of HgCdTe Materials and Detectors”, vol 6: Devices and Applications of Comprehensive Semiconductor Science and Technology, ed. by P. Bhattacharya, R. Fornari, H. Kamimura, p. 141, Elsevier, Amsterdam, 2011.
  • 25. V.V. Bogoboyashchii, “The mechanisms of hole scattering in ρ-Hg0.8Cd0.2Te crystals at low temperatures”, Semiconductors 36, 1332-1340 (2002).
  • 26. I.I. Izhnin, K.D. Mynbaev, M.V. Yakushev, A.I. Izhnin, E.I. Fitsych, N.L. Bazhenov, A.V. Shilyaev, G.V. Savitskii, R. Jakiela, A.V. Sorochkin, V.S. Varavin, and S.A. Dvoretskii, “Electrical and optical properties of CdHgTe films grown by molecular-beam epitaxy on silicon substrates”, Semiconductors 46, 1341-1345 (2012).
  • 27. A. Piotrowski and K. Kloz, “Metal-organic chemical vapor deposition of Hg1-xCdxTe fully doped heterostructures without postgrowth anneal for uncooled MWIR and LWIR detectors”, J. Electron. Mater. 36, 1052-1058 (2007).
  • 28. I.I. Izhnin, G.V. Savitskii, E.I. Fitsych, J. Piotrowski, and K.D. Mynbaev, “Electrical properties of HgCdTe films grown by MOCVD and doped with As”, Opto-Electron. Rev. 21,220-226 (2013).
  • 29. I.I. Izhnin, S.A. Dvoretsky, K.D. Mynbaev, O.E. Fitsych, N.N. Mikhailov, V.S. Varavin, M. Pociask-Bialy, A.V. Voitsekhovskii, and E. Sheregii, “Defect study in molecular beam epitaxy-grown HgCdTe films with activated and unactivated arsenic”, J. Appl. Phys. 115, 163501 (2014).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c998ac1c-bfbe-41be-adaa-0a46405cee65
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.