Identyfikatory
Warianty tytułu
Cell-on-a-chip systems as advanced cell culture models
Języki publikacji
Abstrakty
In vitro study at the cellular level is an important step in evaluation of biological properties of newly developed drugs. In addition, thanks to the use of cell cultures, it is possible to study the function of the cells of a specific tissue and to mimic the conditions of cell growth or disease state. Standard (conventional) cell cultures are most often based on monolayer (two-dimensional, 2D) culture. In such culture, the cells adhere to the surface of the bottle/plate in which they grow. Nevertheless, spatial (three-dimensional, 3D) cultures are also increasingly used in culture research. However, conventional cell cultures still have a limited ability to mimic the natural environment of cell growth. Lab-on-a-chip systems (called Cell-on-a-chip) are new miniature constructional and methodical solutions useful for in vitro cell cultures. Microsystems allow the development of more advanced cell models than standard in vitro cultures so far used in biological laboratories. Thanks to this, it is possible to study cell functions under conditions that mimic the natural environment of cell growth. It should be emphasized, that the microsystems cannot completely replace animal testing. Cell-on-a-chip systems can provide alternative or complementary solutions / tools for in vivo tests, while ensuring high reliability of the obtained results. So far, Lab-on-a-chip systems have been used to assess the cytotoxicity of compounds, model intercellular interactions and mimic the function of various tissues. In this article we describe Cell-on-a-chip systems which can be used as advanced models of cell cultures. At the beginning of the manuscript, Cell-on-a- chip systems and materials used for fabrication microsystems are characterized. Next, the microsystems used as platforms for cytotoxicity study are presented. A special attention has been paid to Cell-on-a-chip for spatial cell cultures using: spheroids, hydrogels, multilayers and nanoscaffolds. Finally, Organ-on-a-chip systems are shortly discussed. Schemes of Cell-on-a-chip system, types of cell cultures obtained in microscale are presented in the article. A table showing a construction materials is also added. At the end, the article is summarized.
Wydawca
Czasopismo
Rocznik
Tom
Strony
715--735
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
- Katedra Biotechnologii Medycznej, Wydział Chemiczny Politechnika Warszawska ul. Noakowskiego 3, 00-664 Warszawa
Bibliografia
- [1] A. Manz, N. Graber, H.M. Widmer, Sens. Actuat. B, 1990, 1, 244.
- [2] D.J. Harrison, K. Fluri, K. Seiler, Z.H. Fan, C.S. Effenhauser, A. Manz, Science, 1993, 262, 859.
- [3] S. Halldorsson, E. Lucumi, R. Gomez-Sjoberg, R.M.T. Fleming, Biosens. Bioelectron., 2015, 63, 218.
- [4] Z. Brzozka, E. Jastrzebska, Cardiac Cell Culture Technologies: Microfluidic and On-Chip Systems, Springer, Szwajcaria, 2018.
- [5] A. Khademhosseini, R. Langer, Nat. Protoc., 2016, 11, 1775.
- [6] W. Ch. Tian, E. Finehout E, Microfluidics for Biological Applications, Springer, New York, 2008.
- [7] J. Wu, Q. Chen, W. Liu, Z. He, J.M. Lin, TrAC, 2017, 87, 19.
- [8] S. Stokłosowa, Hodowla komórek i tkanek, PWN, Warszawa, 2011.
- [9] G.M. Walker, H.C. Zeringue, D.J. Beebe, Lab Chip, 2004, 4, 91.
- [10] H. Andersson, A.B. van den Berg, Sens. Actuat. B, 2003, 92, 315.
- [11] E.W.K. Young, D.J. Beebe, Chem. Soc. Rev., 2010, 39, 1036.
- [12] E. Jastrzebska, E. Tomecka, I. Jesion, Biosens. Bioelectron. 2016, 75, 67.
- [13] M.L. Coluccio, G. Perozziello, N. Malara, E. Parrotta, P. Zhang, F. Gentile, T. Limongi, P.M. Raj, G. Cuda, P. Candeloro, E.D. Fabrizio, Microelectron. Eng., 2019, 208, 14.
- [14] X. Hou, Y.S. Zhang, G. Trujillo-de Santiago, M.M. Alvarez, J. Ribas, S.J. Jonas, P.S. Weiss, A.M. Andrews, J. Aizenberg, A. Khademhosseini, Nature Rev. Mat., 2017, 2, 1.
- [15] E. Jastrzebska, A. Zuchowska, S. Flis, P. Sokolowska, M. Bulka, A. Dybko, Z. Brzozka, Biomicrofluidics, 2018, 12, 044105.
- [16] S. Torino, B. Corrado, M. Iodice, G. Coppola, Inventions, 2018, 3, 65.
- [17] M. Chudy, K. Tokarska, E. Jastrzębska, M. Bułka, S. Drozdek, Ł. Lamch, K.A. Wilk, Z. Brzózka, Biosens. Bioelectron., 2018, 101, 37.
- [18] Y. Ch. Chan, V.N. Goral, M.E. DeRosa, T.J. Huang, P.K. Yuen PK, Biomicrofluidics, 2014, 8, 046505.
- [19] J.Y. Cheng, M.H. Yen, Ch.T. Kuo, T.H. Young, Biomicrofluidics, 2008, 2, 024105.
- [20] E. Vereshchagina, D. Mc Glade, M. Glynn, J. Ducree, Biomicrofluidics, 2013, 7, 034101.
- [21] M. Gel, S. Kandasamy, K. Cartledge, D. Haylock, Sensor. Actuat. A Phys., 2014, 215, 51.
- [22] E. Tomecka, K. Zukowski, E. Jastrzebska, M. Chudy, A. Dybko, Z. Brzozka, Sens. Actuat. B, 2018, 254, 973.
- [23] A. Ghiaseddin, H. Pouri, M. Soleimani, E. Vasheghani-Farahani, H. Ahmadi Tafti, S. Hashemi- Najafabadi, Biochem. Biophys. Res. Commun., 2017, 4, 225.
- [24] B. Mosadegh, B.E. Dabiri, M.R. Lockett, R. Derda, P. Campbell, K.K. Parker, G.M. Whitesides, Adv. Healthc. 2014, 3, 1036.
- [25] J. Pauty, R. Usuba, I. G. Cheng, L. Hespel, H. Takahashi, K. Kato, M. Kobayashi, H. Nakajima, E. Lee, F. Yger, F. Soncin, Y.T. Matsunaga, EBioMedicine, 2018, 27, 225.
- [26] A. Aung, I.S. Bhullar, J. Theprungsirikul, S.K. Davey, H.L. Lim, Y-J. Chiu, X. Ma, S. Dewan, J.H. Lo, A. McCullocha, S. Varghese, Lab Chip, 2016, 16, 153.
- [27] Z. Hesari, M. Soleimani, F. Atyabi, M. Sharifdini, S. Nadri, M.E. Warkiani, M. Zare, R. Dinarvand, J. Biomed. Mater. Res. Part. A, 2016, 104A, 1534.
- [28] W. Zhong, W. Zhang, S. Wang, J. Qin, Plos One, 2013, 8, 1.
- [29] V. Bhaarathy, J. Venugopal, C. Gandhimathi, N. Ponpandian, D. Mangalaraj, Ramakrishna S, Mat. Sci. Eng. C-Mater, 2014, 44, 268.
- [30] E. Tomecka, M. Wojasinski, E. Jastrzebska, M. Chudy, T. Ciach, Z. Brzozka, Mat. Sci. Eng. C- Mater, 2017, 75, 305.
- [31] E. Jastrzebska, M. Bulka, N. Rybicka, K. Zukowski, Sens. Actuat. B., 2015, 221, 1356.
- [32] A. Zuchowska, E. Jastrzebska, M. Chudy, A. Dybko, Z. Brzozka, Anal. Chim. Acta, 2017, 990, 110.
- [33] M. Mondrino, Y.S. Yi, N.K. Wu, X. Ding, D. Huh, Lab Chip, 2017, 17, 3146.
- [34] F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, L.A. Kunz-Schughart, J. Biotechnol. 2010, 148, 3.
- [35] A. Zuchowska, E. Jastrzebska, K. Zukowski, M. Chudy, A. Dybko, Z. Brzozka, Biomicrofluidics, 2017, 11, 024110.
- [36] J. Ruppen, L. Cortes-Dericks, E. Marconi, G. Karoubi, R.A. Schmid, R. Peng, T.M. Marti, O.T. Guenat, Lab Chip, 2014, 14, 1198.
- [37] W. Lim, S. Park, Molecules, 2018, 23, 3355.
- [38] D.J. Richards, Y. Tan, R. Coyle, Y. Li, R. Xu, N. Yeung, A. Parker, D.R. Menick, B. Tian, Y. Mei, Nano Lett., 2016, 16, 4670.
- [39] C.F. Buchanan, E.E. Voigt, Ch.S. Szot, J.W. Freeman, P.P. Vlachos, M.N. Rylander, Tissue Eng. C, 2014, 20, 64.
- [40] Y. Yan, X. Yang, J. Zou, C. Jia, Y. Hu, H. Du, H. Wang, Lab Chip, 2015, 15, 735.
- [41] W. Sekine, Y. Haraguchi, J. Biochips Tissue Chips, 2011, S1, 1.
- [42] B. Zhang, A. Korolj, B.F. Lun Lai, M. Radisic, Nat. Rev. Mat., 2018, 3, 257.
- [43] J.E. Sosa-Hemández, A.M. Villalba-Rodríguez, K.D. Romero-Castillo, M.A. Aguilar-Aguila-Isaías, I.E. García-Reyes, A. Hemández-Antonio, I. Ahmed, A. Sharma, R. Parra-Saldivar, H.M.N. Iqbal, Micromachines, 2018, 9, 536.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c989c4de-bf55-4534-9684-40f0440fd403