PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Direct conversion of alkaline earth metal hydroxides and sulfates to carbonates in ammonia solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the direct conversion behaviors of different alkaline earth metal solids (the hydroxides and the sulfates of alkaline earth metals Ca, Sr, Ba and Mg) to their corresponding carbonates in dissolved carbonate-containing pregnant solutions obtained by direct leaching of a smithsonite (ZnCO3) ore sample in aqueous ammonia solutions having different concentrations (4 M, 8 M and 13.3 M NH3) were investigated by using X-ray diffraction analyses at alkaline earth metal to dissolved carbonate mole ratios of 1:1 and 1:2, for revealing the conversion possibilities of dissolved carbonate in the pregnant solutions to solid carbonate by-products. The results of direct conversion experiments showed that Ca(OH)2, CaSO4•2H2O, Sr(OH)2•8H2O and Ba(OH)2•8H2O converted to their corresponding carbonates, SrSO4 partially converted to SrCO3 as observed by the presence of unreacted SrSO4 peaks in X-ray diffraction patterns of the converted solids, and BaSO4 did not convert to BaCO3 because of its lower solubility with respect to BaCO3. On the other hand, it was observed that Mg(OH)2 did not convert to MgCO3, but MgSO4•7H2O converted dominantly to an uncommon phase, which was tentatively identified as Mg5Zn3(CO3)2(OH)12•H2O. In the study, a complete discussion on the conversion behaviors of alkaline earth metal solids to their corresponding carbonates was given considering the differences between their solubility product constants and the changes in the free energies of the theoretical conversion reactions. In addition, infrared spectra and scanning electron microscope images of some of the converted solids were also presented for characterization purposes.
Rocznik
Strony
169--180
Opis fizyczny
Bibliogr. 59 poz., rys., tab., wykr.
Twórcy
autor
  • Şırnak University, Mining Engineering Department, 73000, Şırnak, Turkey
autor
  • Adana Alparslan Türkeş Science and Technology University, Mining Engineering Department, 01250, Adana, Turkey
  • Hacettepe University, Mining Engineering Department, 06800, Ankara, Turkey
  • Hacettepe University, Mining Engineering Department, 06800, Ankara, Turkey
Bibliografia
  • ADLER, H.H., KERR, P.F., 1963. Infrared absorption frequency trends for anhydrous normal carbonates. Am. Mineral. 48, 124-137.
  • BARIN, I., 1995. Thermochemical Data of Pure Substances. 3rd Edition, VCH, Weinheim.
  • BENSON, L.V., TEAGUE, L.S., 1980. A Tabulation of Thermodynamic Data for Chemical Reactions Involving 58 Elements Common to Radioactive Waste Package Systems. Topical Report for Rockwell International, 97 p.
  • BHATTACHARJYA, D., SELVAMANI, T., MUKHOPADHYAY, I., 2012. Thermal decomposition of hydromagnesiteEffect of morphology on the kinetic parameters. J. Therm. Anal. Calorim. 107, 439-445.
  • BINGOL, D., AYDOGAN, S., BOZBAS, S.K., 2012. Production of SrCO3 and (NH4)2SO4 by the dry mechanochemical processing of celestite. J. Ind. Eng. Chem. 18, 834-838.
  • CARRILLO, F.R.P., URIBE, A.S., CASTILLEJOS, A.H.E., 1995. A laboratory study of the leaching of celestine in a pachuca tank. Miner. Eng. 8, 495-509.
  • CASTILLEJOS, A.H.E., de la CRUZ, F.P. del B., URIBE, A.S., 1996. The direct conversion of celestite to strontiumcarbonate in sodium carbonate aqueous media. Hydrometallurgy 40, 207-222.
  • CHENG, H., ZHANG, X., SONG, H., 2014. Morphological investigation of calcium carbonate during ammonificationcarbonization process of low concentration calcium solution. J. Nanomater. Article ID 503696, 7 p.
  • DING, Z., CHEN, Q., YIN, Z., LIU, K., 2013. Predominance diagrams for Zn(II)-NH3-Cl−-H2O system. Trans. Nonferrous Met. Soc. China.23, 832-840.
  • DUNN, P.J., 1986. A new zinc magnesium carbonate and data for other unnamed species from Franklin and Sterling Hill, New Jersey. Journal of the Franklin-Ogdensburg Mineralogical Society 27, 25-26.
  • EHSANI, A., EHSANI, I., OBUT, A., 2021. Preparation of different zinc compounds from a smithsonite ore through ammonia leaching and subsequent heat treatment. Physicochem. Probl. Mi. 57, 96-106.
  • EHSANI, I., OBUT, A., 2019. Conversion behaviours of Sr- and Ca-containing solids in dissolved carbonate containing alkaline pregnant zinc leaching solutions. Miner. Eng. 135, 9-12.
  • ENGHAG, P., 2004. Encyclopedia of the Elements. WILEY-VCH, Weinheim.
  • ERDEMOGLU, M., AYDOGAN, S., CANBAZOGLU, M., 2007. A kinetic study on the conversion of celestite (SrSO4) to SrCO3 by mechanochemical processing. Hydrometallurgy 86, 1-5.
  • ERDOS, E., ALTORFER, H., WITT, J., 1979. Crystal data for ammonium magnesium carbonate tetrahydrate [(NH4)2Mg(CO3)2•4H2O]. J. Appl. Cryst. 12, 611.
  • FREE, M.L., 2013. Hydrometallurgy: Fundamentals and Applications. John Wiley & Sons, New Jersey.
  • FRENAY, J., 1985. Leaching of oxidized zinc ores in various media. Hydrometallurgy 15, 243-253.
  • FROST, R.L., HALES, M.C., MARTENS, W.N., 2009. Thermogravimetric analysis of selected group (II) carbonate minerals-Implication for the geosequestration of greenhouse gases. J. Therm. Anal. Calorim. 95, 999-1005.
  • HARVEY, T.G., 2006. The hydrometallurgical extraction of zinc by ammonium carbonate: A review of the Schnabel process.Miner. Process. Extr. Metall. Rev. 27, 231-279.
  • HIZLI, I.G., BILEN, A., SEZER, R., ERTURK, S., ARSLAN, C., 2017. Production of strontianite from celestite ore in carbonate media. Proceedings of the 3rd Pan American Materials Congress, pp. 607-613.
  • ICIN, K., OZTURK, S., SUNBUL, S.E., 2021. Investigation and characterization of high purity and nano-sized SrCO3production by mechanochemical synthesis process. Ceram. Int. 47, 33897-33911.
  • JAMBOR, J.L., 1964. Studies of basic copper and zinc carbonates: I - Synthetic zinc carbonates and their relationship to hydrozincite. Can. Mineral. 8, 92-108.
  • JIMOH, O.A., ARIFFIN, K.S., HUSSIN, H.B., TEMITOPE, A.E., 2018. Synthesis of precipitated calcium carbonate: a review. Carbonate. Evaporite. 33, 331-346.
  • KOGA, N., YAMANE, Y., 2008. Effect of mechanical grinding on the reaction pathway and kinetics of the thermal decomposition of hydro-magnesite. J. Therm. Anal. Calorim. 93, 963-971.
  • KRALJ, D., KONTREC, J., BRECEVIC, L., FALINI, G., NOTHIG-LASLO, V., 2004. Effect of inorganic anions on the morphology and structure of magnesium calcite. Chem.-Eur. J. 10, 1647-1656.
  • KRESSE, R., BAUDIS, U., JAGER, P., RIECHERS, H.H., WAGNER, H., WINKLER, J., WOLF, H.U., 2012. Barium and barium compounds. Ullmann’s Encyclopedia of Industrial Chemistry, WILEY-VCH, Weinheim.
  • LI, L., LIN, R., TONG, Z., FENG, Q., 2012. Facile synthesis of SrCO3 nanostructures in methanol/water solution without additives. Nanoscale Res. Lett. 7, 305.
  • LI, S., LI, H., CHEN, W., PENG, J., MA, A., YIN, S., ZHANG, L., YANG, K., 2018. Ammonia leaching of zinc from lowgrade oxide zinc ores using the enhancement of the microwave irradiation. Int. J. Chem. React. Eng. 16, 1-9.
  • LIDE, D.R. (Editor-in-Chief), 2010. CRC Handbook of Chemistry and Physics. 90th Edition, CRC Press, Florida.
  • LIU, Q., MA, Y., DUAN, X., ZHOU, Y., LIU, X., PEI, C., 2014. Controlled crystallization of lamellar calcium carbonate crystals induced by solution of sticky rice polysaccharide (from Oryza sativa). CrystEngComm 16, 11042-11049.
  • MTA, 2021. Mineral and energy resources of Sivas province. General Directorate of Mineral Exploration and Research, https://www.mta.gov.tr/v3.0/sayfalar/bilgi-merkezi/maden_potansiyel_2010/sivas_madenler.pdf, accessed 15 August 2021 (in Turkish).
  • OBUT, A., BALAZ, P., GIRGIN, I., 2006. Direct mechanochemical conversion of celestite to SrCO3. Miner. Eng. 19, 1185-1190.
  • PATNAIK, P., 2003. Handbook of Inorganic Chemicals. McGraw-Hill, New York.
  • PHIPPS, J.S., 2014. Engineering minerals for performance applications: an industrial perspective. Clay Miner. 49, 1-16.
  • PULLAR, R.C., 2012. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191-1334.
  • REMAZEILLES, C., REFAIT, P., 2009. Fe(II) hydroxycarbonate Fe2(OH)2CO3 (chukanovite) as iron corrosion product: Synthesis and study by Fourier Transform Infrared Spectroscopy. Polyhedron 28, 749-756.
  • ROPP, R.C., 2013. Encyclopedia of the Alkaline Earth Compounds. Elsevier, Amsterdam.
  • SETOUDEH, N., WELHAM, N.J., AZAMI, S.M., 2010. Dry mechanochemical conversion of SrSO4 to SrCO3. J. Alloy. Compd. 492, 389-391.
  • SEZER, R., ARSLAN, C., 2019. Mechano-chemical conversion of celestite in highly concentrated sodium carbonate media. Physicochem. Probl. Mi. 55, 324-335.
  • SHAHID, T., ARFAN, M., ZEB, A., BIBI, T., KHAN, T.M., 2018. Preparation and physical properties of functional barium carbonate nanostructures by a facile composite-hydroxide-mediated route. Nanomater. Nanotechnol. 8, 1-8.
  • SHAMSIPUR, M., POURMORTAZAVI, S.M., HAJIMIRSADEGHI, S.S., ROUSHANI, M., 2013. Applying Taguchi robust design to the optimization of synthesis of barium carbonate nanorods via direct precipitation. Colloid. Surface. A 423, 35-41.
  • SINGERLING, S.A., 2017. Strontium - Advance Release. U.S. Geological Survey Minerals Yearbook, 7 p.
  • STAHL, R., JACOBS, H., 1997a. Zur kristallstruktur von SrZn(OH)4•H2O. Z. Anorg. Allg. Chem. 623, 1273-1276.
  • STAHL, R., JACOBS, H., 1997b. Synthese und kristallstruktur von BaZn2(OH)6•5H2O. Z. Anorg. Allg. Chem. 623, 423-428.
  • SUAREZ-ORDUNA, R., RENDON-ANGELES, J.C., LOPEZ-CUEVAS, J., YANAGISAWA, K., 2004. The conversion of mineral celestite to strontianite under alkaline hydrothermal conditions. J. Phys.-Condens. Mat. 16, S1331-S1344.
  • SUAREZ-ORDUNA, R., RENDON-ANGELES, J.C., YANAGISAWA, K., 2007. Kinetic study of the conversion of mineral celestite to strontianite under alkaline hydrothermal conditions. Int. J. Miner. Process. 83, 12-18.
  • THENEPALLI, T., JUN, A.Y., HAN, C., RAMAKRISHNA, C., AHN, J.W., 2015. A strategy of precipitated calcium carbonate (CaCO3) fillers for enhancing the mechanical properties of polypropylene polymers. Korean J. Chem. Eng. 32, 1009-1022.
  • VAGVOLGYI, V., FROST, R.L., HALES, M., LOCKE, A., KRISTOF, J., HORVATH, E., 2008a. Controlled rate thermal analysis of hydromagnesite. J. Therm. Anal. Calorim. 92, 893-897.
  • VAGVOLGYI, V., HALES, M., MARTENS, W., KRISTOF, J., HORVATH, E., FROST, R.L., 2008b. Dynamic and controlled rate thermal analysis of hydrozincite and smithsonite. J. Therm. Anal. Calorim. 92, 911-916.
  • WANG, Y.-M., WAINWRIGHT, G., 1986. Formation and decomposition kinetic studies of calcium zincate in 20 w/o KOH.J. Electrochem. Soc. 133, 1869-1872.
  • WINIARSKI, J., TYLUS, W., WINIARSKA, K., SZCZYGIEL, I., SZCZYGIEL, B., 2018. XPS and FT-IR characterization of selected synthetic corrosion products of zinc expected in neutral environment containing chloride ions. J. Spectrosc. Article ID 2079278, 14 p.
  • XU, J., XUE, D., 2006. Chemical synthesis of BaCO3 with a hexagonal pencil-like morphology. J. Phys. Chem. Solids 67, 1427-1431.
  • YAMAMOTO, G., KYONO, A., SANO, Y., MATSUSHITA, Y., YONEDA, Y., 2021. In situ and ex situ studies on thermal decomposition process of hydromagnesite Mg5(CO3)4(OH)2•4H2O. J. Therm. Anal. Calorim. 144, 599-609.
  • YAN, F., ZHANG, X., ASSELIN, E., DUAN, D., LI, Z., 2021. Preparation of strontium carbonate via celestite leaching in NaHCO3 using two interconnected reactors. Hydrometallurgy 204, 105729.
  • ZHANG, W., YU, Y., YI, Z., 2017. Controllable synthesis of SrCO3 with different morphologies and their co-catalytic activities for photocatalytic oxidation of hydrocarbon gases over TiO2. J. Mater. Sci. 52, 5106-5116.
  • ZHANG, Q., SAITO, F., 1997. Non-thermal production of barium carbonate from barite by means of mechanochemical treatment. J. Chem. Eng. Jpn. 30, 724-727.
  • ZHU, A.L., DUCH, D., ROBERTS, G.A., LI, S.X.X., WANG, H., DUCH, K., BAE, E., JUNG, K.S., WILKINSON, D., KULINICH, S.A., 2015. Increasing the electrolyte capacity of alkaline Zn-air fuel cells by scavenging zincate with Ca(OH)2. ChemElectroChem 2015, 134-142.
  • ZORAGA, M., KAHRUMAN, C., 2014. Kinetics of conversion of celestite to strontium carbonate in solutions containing carbonate, bicarbonate and ammonium ions, and dissolved ammonia. J. Serb. Chem. Soc. 79, 345-359.
  • ZORAGA, M., KAHRUMAN, C., YUSUFOGLU, I., 2016. Conversion kinetics of SrSO4 to SrCO3 in solutions obtained by dissolving/hydrolyzing of equimolar amounts of NH4HCO3 and NH4COONH2. Hydrometallurgy 163, 120-129
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c989a7c2-f3dd-459c-915c-76c4564ba4f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.