PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of thermo-hydraulic performance of a solar air heater tube with modern obstacles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a numerical analysis on turbulent flow and forced-convection characteristics of rectangular solar air heater tube fitted with staggered, transverse, V-shape, modern obstacles on the heated walls. Air, whose Prandtl number is 0.71, is the working fluid used, and the Reynolds number considered equal to 6×10 3. The governing flow equations are solved using a finite volume approach and the semi-implicit pressure linked equation (SIMPLE) algorithm. With regard to the flow characteristics, the quadratic upstream interpolation for convective kinetics differencing scheme (QUICK) was applied, and a second-order upwind scheme (SOU) was used for the pressure terms. The dynamic thermo-energy behavior of the V-shaped baffles with various flow attack angles, i.e., 50°, 60°, 70°, and 80° are simulated, analyzed, and compared with those of the conventional flat rectangular baffles with attack value of 90°. In all situations, the thermal transfer rate was found to be much larger than unity; its maximum value was around 3.143 for the flow attack angle of 90° and y = H/2.
Rocznik
Strony
33--56
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr., wz.
Twórcy
autor
  • Unit of Research on Materials and Renewable Energies, Faculty of Sciences, Abou Bekr Belkaid University of Tlemcen, Algeria
  • Faculty of Engineering, Kuwait College of Science and Technology, 7th Ring Road, Doha, Kuwait
  • Unit of Research on Materials and Renewable Energies, Faculty of Sciences, Abou Bekr Belkaid University of Tlemcen, Algeria
  • Unit of Research on Materials and Renewable Energies, Faculty of Sciences, Abou Bekr Belkaid University of Tlemcen, Algeria
Bibliografia
  • [1] Patankar S.V., Liu C.H., Sparrow E.M.: Fully developed flow and heat transfer in ducts having streamwise-periodic variations of cross-sectional area. J. Heat TransT ASME 99 (1977), 2, 180–186.
  • [2] Bergeles G., Athanassiadis N.: The flow past a surface-mounted obstacle. J. Fluid. Eng. 105 (1983), 4, 461–463.
  • [3] Nemec P., Čaja A., Lenhard R.: Visualization of heat transport in heat pipes using thermocamera. Arch. Thermodyn. 31 (2010), 4, 125–132.
  • [4] Prasad B.N., Saini J.S.: Effect of artificial roughness on heat transfer and friction factor in a solar air heater. Sol. Energy 41 (1988), 6, 555–560.
  • [5] Yeh H.M., Chou W.H.: Efficiency of solar air heaters with baffles. Energy 16 (1991), 7, 983–987.
  • [6] Bartoszewicz J., Bogusławski L.: Numerical analysis of the steam flow field in shell and tube heat exchanger. Arch. Thermodyn. 37 (2016), 2, 107–120.
  • [7] Acharya S., Dutta S., Myrum T.A., Baker R.S.: Turbulent flow past a surfacemounted two-dimensional rib. J. Fluid. Eng. 116 (1994), 2, 238–246.
  • [8] Yeh H.M., Ho C.D., Lin C.Y.: The influence of collector aspect ratio on the collector efficiency of baffled solar air heaters. Energy 23 (1998), 1, 11–16.
  • [9] Muszyński T., Kozieł S.M.: Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator. Arch. Thermodyn. 37(2016), 3, 45–62.
  • [10] Şara O.N., Pekdemir T., Yapici S., Erşahan H.: Thermal performance analysis for solid and perforated blocks attached on a flat surface in duct flow. Energ. Convers. Manage. 41(2000), 10, 1019–1028.
  • [11] Murata A., Mochizuki S.: Comparison between laminar and turbulent heat transfer in a stationary square duct with transverse or angled rib turbulators. Int. J. Heat Mass Tran. 44(2001), 6, 1127–1141.
  • [12] Cieśliński J.T., Fiuk A., Typiński K., Siemieńczuk B.: Heat transfer in plate heat exchanger channels: Experimental validation of selected correlation equations. Arch. Thermodyn. 37(2016), 3, 19–29.
  • [13] Demartini L.C., Vielmo H.A., Möller S.V.: Numeric and experimental analysis of the turbulent flow through a channel with baffle plates. J. Braz. Soc. Mech. Sci. Eng. 26(2004), 2, 153–159.
  • [14] Dutta P., Hossain A.: Internal cooling augmentation in rectangular channel using two inclined baffles. Int. J. Heat Fluid Fl. 26(2005), 2, 223–232.
  • [15] Duda P., Mazurkiewicz G.: Numerical modeling of heat and mass transfer in cylindrical ducts. Arch. Thermodyn. 31(2010), 1, 33–43.
  • [16] Tandiroglu A.: Effect of flow geometry parameters on transient heat transfer for turbulent flow in a circular tube with baffle inserts. Int. J. Heat Mass Tran. 49(2006), 9-10, 1559–1567.
  • [17] Nasiruddin, Kamran Siddiqui M.H.: Heat transfer augmentation in a heat exchanger tube using a baffle. Int. J. Heat Fluid Fl. 28(2007), 2, 318–328.
  • [18] Zima W., Dziewa P.: Mathematical modelling of heat transfer in liquid flat-plate solar collector tubes. Arch. Thermodyn. 31(2010), 2, 45–62.
  • [19] Kahalerras H., Targui N.: Numerical analysis of heat transfer enhancement in a double pipe heat exchanger with porous fins. Int. J. Numerical Meth. Heat and Fluid Flow 18(2008), 5, 593–617.
  • [20] Sripattanapipat S., Promvonge P.: Numerical analysis of laminar heat transfer in a channel with diamond-shaped baffles. Int. Commun. Heat Mass 36(2009), 1, 32–38.
  • [21] Rao Y., Xu Y., Wan C.: An experimental and numerical study of flow and heat transfer in channels with pin fin-dimple and pin fin arrays. Exp. Therm. Fluid Sci. 38(2012), 237–247.
  • [22] Alam T., Saini R.P., Saini J.S.: Experimental investigation on heat transfer enhancement due to V-shaped perforated blocks in a rectangular duct of solar air heater. Energ. Convers. Manage. 81(2014), 374–383.
  • [23] Kumar A., Kim M.H.: Convective heat transfer enhancement in solar air channels. Appl. Thermal Eng. 89(2015), 239–261.
  • [24] Kumar R., Sethi M., Chauhan R., Kumar A.: Experimental study of enhancement of heat transfer and pressure drop in a solar air channel with discretized broken V-pattern baffle. Renew. Energ. 101(2017), 856–872.
  • [25] Wang F., Zhang J., Wang S.: Investigation on flow and heat transfer characteristics in rectangular channel with drop-shaped pin fins. Propulsion Power Res. 1(2012), 1, 64–70.
  • [26] Chamoli S.: A Taguchi approach for optimization of flow and geometrical parameters in a rectangular channel roughened with V down perforated baffles. Case Stud. Therm. Eng. 5(2015), 59–69.
  • [27] Du B.C., He Y.L., Wang K., Zhu H.H.: Convective heat transfer of molten salt in the shell-and-tube heat exchanger with segmental baffles. Int. J. Heat Mass Trans. 113(2017), 456–465.
  • [28] Mohammadi Pirouz M., Farhadi M., Sedighi K., Nemati H., Fattahi E.: Lattice Boltzmann simulation of conjugate heat transfer in a rectangular channel with wall-mounted obstacles. Sci. Iran. B 18(2011), 2 213–221.
  • [29] Jedsadaratanachai W., Boonloi A.: Effects of blockage ratio and pitch ratio on thermal performance in a square channel with 30◦ double V-baffles. Case Stud. Therm. Eng. 4(2014), 118–128.
  • [30] Zhao H., Liu Z., Zhang C., Guan N., Zhao H.: Pressure drop and friction factor of a rectangular channel with staggered mini pin fins of different shapes. Exp. Therm. Fluid Sci. 71(2016), 57–69.
  • [31] Tahmasebi A., Mahdavi M., Ghalambaz M.: Local thermal nonequilibrium conjugate natural convection heat transfer of nanofluids in a cavity partially filled with porous media using Buongiorno’s model. Numer. Heat Tr. A-Appl. 73(2018), 4, 254– 276.
  • [32] Mehryan S.A.M., Ghalambaz M., Izadi M.: Conjugate natural convection of nanofluids inside an enclosure filled by three layers of solid, porous medium and free nanofluid using Buongiorno’s and local thermal non-equilibrium models. J. Therm. Anal. Calorim. 135(2019), 2, 1047–1067.
  • [33] Mehryan S.A.M., Izadpanahi E., Ghalambaz M., Chamkha A.J.: Mixed convection flow caused by an oscillating cylinder in a square cavity filled with CuAl2O3/water hybrid nanofluid. J. Therm. Anal. Calorim. 137(2019), 965–982.
  • [34] Mehryan S.A.M., Kashkooli F.M., Ghalambaz M., Chamkha A.J.: Free convection of hybrid Al2O3-Cu water nanofluid in a differentially heated porous cavity. Adv. Powder Technol. 28(2017), 9, 2295–2305.
  • [35] Ghalambaz M., Doostani A., Izadpanahi E., Chamkha A.J.: Phase-change heat transfer in a cavity heated from below: The effect of utilizing single or hybrid nanoparticles as additives. J. Taiwan Inst. Chem. Eng. 72(2017), 104–115.
  • [36] Ghalambaz M., Doostani A., Chamkha A.J., Ismael M.A.: Melting of Nanoparticles-Enhanced Phase-Change Materials in an Enclosure: Effect of Hybrid Nanoparticles. Int. J. Mech. Sci. 134(2017), 85–97.
  • [37] Ghalambaz M., Jamesahar E., Ismael M.A, Chamkha A.J.: Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity. Int. J. Therm. Sci. 111(2017), 256–273.
  • [38] Chamkha A.J., Doostanidezfuli A., Izadpanahi E., Ghalambaz M.: Phasechange heat transfer of single/hybrid nanoparticles-enhanced phase-change materials over a heated horizontal cylinder confined in a square cavity. Adv. Powder Technol. 28(2017), 2, 385–397.
  • [39] Menni Y., Azzi A.: Computational fluid dynamical analysis of turbulent heat transfer in a channel fitted with staggered V-Shaped baffles. WJMS 14(2018), 2, 108–123.
  • [40] Feng Z., Ivan C.: Numerical evaluation of flow and heat transfer in plate-pin fin heat sinks with various pin cross-sections. Numer. Heat Tr. A-Appl. 60(2011), 2, 107–128.
  • [41] Dittus F.W., Boelter L.M.K.: Heat transfer in automobile radiators of tubular type. Int. Commun. Heat 12(1985), 1, 3–22.
  • [42] Petukhov B.S.: Heat transfer and friction in turbulent pipe flow with variable physical properties. Adv. Heat Transf. 6(1970), 503–564,
  • [43] Patankar S.V.: Numerical heat transfer and fluid flow. McGraw-Hill, New York 1980.
  • [44] Leonard B.P., Mokhtari S.: ULTRA-SHARP nonoscillatory convection schemes for high-speed steady multidimensional flow. NASA TM 1-2568, NASA Lewis Research Center, 1990.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c97f9c03-8202-49e3-9285-c606f2a8894f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.