Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Thermochemical processes are among the most effective methods of obtaining hydrogen-rich gases from biomass. These technologies mainly include pyrolysis, gasification and hydrothermal liquefaction. Thermochemical conversion of dry biomass is similar to the conversion of fossil fuels using gasification and pyrolysis methods. Products obtained through thermochemical processes (CO and CH4) can be processed into other biofuels, e.g. syngas, a raw material for producing synthetic hydrocarbons, methanol and alcohols. In recent years, advanced research has been carried out using biomass to produce liquid fuels. The biomass pyrolysis process in the presence of a catalyst is based on the rapid heating of the biomass to a temperature of approximately 500°C in the so-called inert atmosphere in which there are no reactive gases. This process produces a liquid product: pyrolysis oil, gas and charcoal. The bio-oil produced in this process constitutes 60-75% of the mass of the biofuel and is thermally unstable because it contains up to 300 different chemical compounds. However, the bio-oil obtained in this way is incompatible with conventional liquid transport fuels (gasoline, diesel) due to its high oxygen content. Pyrolysis in the presence of a zeolite catalyst is a process that allows for the effective conversion of biomass in economic and ecological terms. A zeolite catalyst makes it possible to remove oxidized compounds in situ and modify the properties of the biofuel to ensure its compatibility with conventional transport fuels. The catalyst plays a crucial role in this process because it removes oxygen from oxygenates and, consequently, creates stable reaction products that can then be treated to obtain renewable transport fuels or other useful chemicals. The article presents methods of biomass conversion via pyrolisis, microorganisms usage, zeolite-based catalysis, biocatalysis and photo-fermentation, which poses a big possibility of diversification of renewable energy sources.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
84--39
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Kielce University of Technology, Kielce, Poland
Bibliografia
- Atchimarungsri, T., Gao, X., Wang, K., Ma, Q., Zhang, J., Fan, S., He, F., Tian, J., Reubroycharoen, P., Zhao, T. (2022), Selective Conversion of Glycerol to Methanol over CaO-Modified HZSM-5 Zeolite. Molecules, 27(21), 7221. https://doi.org/10.3390/molecules27217221
- Basu, P. (2010). Biomass gasification and pyrolysis: Practical design. 1st ed., Elsevier, Kidlington, Oxford
- Beil, M., Beyrich, W. (2013). Biogas upgrading to biomethane, [in:] Wellinger, A., Murphy, J., Baxter, D., The bio-gas handbook: Science, production and application, Woodhead Publishing Ltd., Cambridge, 364-377.
- Biofuels Market Size, Share & Growth Analysis Report, By Fuel Type (Biodiesel and Ethanol), By Feedstock (Coarse Grain, Sugar Crop, Vegetable Oil, Jatropha, Molasses) – Global Industry Analysis, Trends, Revenue, Segment Forecasts, Regional Outlook 2024-2033. Retrived from: https://www.precedenceresearch.com/biofuels-market
- Biomass Power Market (By Technology: Combustion, Gasification, Anaerobic Digestion, Others; By Feedstock: Solid Biofuel, Liquid Biofuel, Biogas, Others; By End Use: Industrial, Commercial, Residential) – Global In-dustry Analysis, Size, Share, Growth, Trends, Regional Outlook, and Forecast 2023-2030. Retrived from: https://www.precedenceresearch.com/biomass-power-market/
- Bogumił, D. (2020). Biomasa jako surowiec do produkcji biopaliw. Paliwa Płynne, 10,11,12/2020. (in Polish)
- Cozma, P., Wukovits, W., Mamalig, I., Friedl, A., Gavrilescu, M. (2015). Modeling and simulation of high pressure water scrubbing technology applied for biogas upgrading. Clean Technology Environmental Policy, 17, 373-391. https://doi.org/10.1007/s10098-014-0787-7
- Czarnocka J., (2015), The use of microwave pyrolysis for biomass processing, The Archives of Automotive Engi-neering, 67, 141.
- Dale, S. (2023). BP Energy Outlook 2023, bp.com. Retrived from: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2023.pdf
- De Bhowmick, G., Sarmah, A.K., Sen R. (2018). Lignocellulosic biorefinery as a model for sustainable development of biofuels andvalueadded products. Bioresource Technology, 247, 1144-1154. https://doi.org/10.1016/j.biortech.2017.09.163
- Deublein, D., Steinhauser, A. (2010). Biogas from Waste and Renewable Resources. An Introduction. 2nd, Revised and Expanded Edition, Wiley-VCH
- Gołaszewski, J., Krzyżaniak, M., Olba-Zięty, E., Stolarski, M., Radawiec, W., Konkol, M., Kowalski, R., Rój, E., Faber, A. (2020). Technologie rynkowe przetwarzania biomasy lignocelulozowej do biopaliw stałych, ciekłych i gazowych. Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego w Olsztynie. (in Polish)
- Gao, Z., Xiang, M., He, M., Zhou, W., Chen, J., Lu, J., Wu, Z., Su, Y. (2023). Transformation of CO2 with Glycerol to Glycerol Carbonate over ETS-10 Zeolite-Based Catalyst. Molecules, 28(5), 2272. https://doi.org/10.3390/molecules28052272
- Kadier, A., Sahaid Kalil, M., Abdeshahian, P., Chandrasekhar, K., Mohamed, A., Farhana Azman, N., Logrono, W., Simayi, Y., Abdul Hamid, A. (2016). Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals. Renewable and Sustainable En-ergy Reviews, 61, 501-525. https://doi.org/10.1016/j.rser.2016.04.017
- Kan, T., Strezov V., Evans T.J. (2016). Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 57, 1126-1140. https://doi.org/10.1016/j.rser.2015.12.185
- Kozłowski, K., Lewicki, A., Cieślik, M., Jańczak, D., Czekała, W., Smurzyńska, A., Dach, J. (2016). Biologiczne metody produkcji wodoru. Technika Rolnicza Ogrodnicza Leśna, 5, 26-28. (in Polish)
- Książek, S., Kida, M., Koszelnik, P. (2017). Możliwości Katalitycznego Zastosowania Materiałów Odpadowych, Journal of Civil Engineering, Environment and Architecture, XXXIV, 64, (2/II/17), 55-62. https://doi.org/10.7862/rb.2017.81
- Lewandowski, W., Klugmann-Radziemska, E., Ryms, M., Ostrowski, P. (2011). Modern Methods of Thermochemi-cal Biomass Conversion into Gas, Liquid and Solid Fuels. Ecological Chemistry and Engineering S, 18, 39-47.
- Logan, B. (2007). Microbial fuel cells, John Wiley and Sons, New York.
- Łukajtis, R., Hołowacz, I., Kucharska, K., Glinka, M., Rybarczyk, P., Przyjazny, A., Kamiński, M. (2018). Hydro-gen production from biomass using dark fermentation. Renewable & Sustainable Energy Reviews, 91, 665-694. https://doi.org/10.1016/j.rser.2018.04.043
- Manish, S., Banerjee, R. (2008), Comparison of biohydrogen production processes. International Journal of Hydrogen Energy, 33, 279-86. https://doi.org/10.1016/j.ijhydene. 2007.07.026
- Mohan, D., Pittman Jr., C.U., Steele, P.H. (2006). Pyrolysis of Wood/Biomass for Bio-Oil: A Critical Review. Energy Fuels, 20, 848-889. http://dx.doi.org/10.1021/ef0502397
- Nadziakiewicz, J., Wacławiak, K., Stelmach, S. (2012). Procesy termiczne utylizacji odpadów, Wydawnictwo Politechniki Śląskiej, Gliwice. (in Polish)
- Narang, K. (2019). Tailoring of adsorptive properties of zeolites for Biogas Upgrading. Engineering Materials Division of Materials Science Department of Engineering Sciences and Mathematics (TVM), Luleĺ.
- Parkhey, P., Gupta, P. (2017). Improvisations in structural features of microbial electrolytic cell and process pa-rameters of electrohydrogenesis for efficient biohydrogen production: a review. Renewable and Sustainable Energy Reviews, 69, 1085-1099. https://doi.org/10.1016/j.rser.2016.09.101
- Produkcja energii elektrycznej w Polsce. (2023). Retrived from: https://globenergia.pl/produkcja-energii-elektrycznej-w-polsce-mamy-nowe-statystyki/ (in Polish)
- Qazi, U., Javaid, R., Ikhlaq, A., Khoja, A., Saleem, F. (2022). A Comprehensive Review on Zeolite Chemistry for Catalytic Conversion of Biomass/Waste into Green Fuels. Molecules, 27(23), 8578, https://doi.org/10.3390/molecules27238578
- Retajczyk, M., Wróblewska, A. (2018). Pyrolysis of biomass as a source of energy. Wiadomości chemiczne, 72, 3-4. (in Polish)
- Shabani, J., Ameh, A., Oyekola, O., Babajide, O., Petrik, L. (2022). Fusion-Assisted Hydrothermal Synthesis and Post-Synthesis Modification of Mesoporous Hydroxy Sodalite Zeolite Prepared from Waste Coal Fly Ash for Biodiesel Production. Catalysts, 12(12), 1652. https://doi.org/10.3390/catal12121652
- Sharma, A., Pareek, V., Zhang, D. (2015). Biomass pyrolysis – A review of modelling, process parameters and catalytic studies. Renewable and Sustainable Energy Reviews, 50, 1081-1096. https://doi.org/10.1016/j.rser.2015.04.193
- Szufa, Sz. (2015). Sposoby konwersji biomasy w celu poprawy jej właściwości paliwowych. Retrived from: https://www.proakademia.eu/gfx/baza_wiedzy/165/szufa7.pdf (in Polish)
- Szymańska, M. (2019). Produkcja biopaliw szansą dla wyższych cen rzepaku. Retrived from: https://www.tygodnik-rolniczy.pl/pieniadze/produkcja-biopaliw-szansa-dla-wyzszych-cen-rzepaku-2377573 (in Polish)
- Tripathi, M., Sahu, J.N., Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467-481. https://doi.org/10.1016/j.rser.2015.10.122
- Wyman, C.E. (1994). Ethanol from lignocellulosic biomass: Technology, economics, and opportunities. Bioresource Technology, 50, 3-15. https://doi.org/10.1016/0960-8524(94)90214-3.
- Załęcki, J., Molenda, P. (2022). Instalacje OZE w Polsce – raport za pierwsze półrocze 2022 roku. Retrived from: https://top-oze.pl/instalacje-oze-w-polsce-raport-za-pierwsze-polrocze-2022-roku Department of Thermal Technology and Refrigeration, Faculty of Mechanical Engineering, Lodz University of Technology. (in Polish)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c97d897b-a858-4cc9-b489-5f08c56d84a1