PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Graphite oxide coated sand composites for efficient removal of calcium ions from hard water: isotherm, kinetics, and adsorption mechanism

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Even if granular media filtration effectively reduces the turbidity of water, its limited surface functionalities and physical properties may constrain its ability to effectively remove critical contaminants from water. In our research, we successfully synthesized a new type of porous material – multiple coated GO/sand (M-GO/S) by integrating ordinary river sand with graphite oxide (GO) for the adsorptive removal of calcium ions in terms of water softening. Prior investigations confirmed it could remove water turbidity and fluoride simultaneously. M-GO/S was characterized using microscopic and spectroscopic techniques. The results indicate the presence of an uneven coating of graphite oxide, and the nanocomposite contains oxygencontaining functional groups. Under given conditions, the M-GO/S nanocomposite demonstrated remarkable efficacy in removing 75% of calcium ions (a higher removal percentage than commercial coal powdered activated carbon) from simulated hard water: pH 8, 5.0 g dosage, 50 mg/L calcium ions, and 20 min contact time. The isotherm and kinetic data revealed that the adsorption mechanism primarily comprises multilayer adsorption by means of a chemical sorption process. The mechanism of the proposed M-GO/S nanocomposite for removing calcium ions from hard water is elucidated using (XPS) analysis. The presence of (-O-Ca-O-) chemical bonds on the surface of the nanocomposite after equilibration with calcium ions suggests the occurrence of chemical interactions between the calcium ions and oxygen-containing functional groups of the M-GO/S. Consequently, the synthesized M-GO/S nanocomposite can be identified as a promising candidate for hard water treatment.
Rocznik
Strony
209--219
Opis fizyczny
Bibliogr. 61 poz., rys., tab.
Twórcy
  • Gampaha Wickramarachchi University of Indigenous Medicine, Department of Indigenous Medical Resources, Yakkala, Sri Lanka
  • University of Kelaniya, Department of Chemistry, Kelaniya, Sri Lanka
  • University of Kelaniya, Department of Chemistry, Kelaniya, Sri Lanka
  • University of Kelaniya, Department of Chemistry, Kelaniya, Sri Lanka
  • Sri Lanka Institute of Nanotechnology (SLINTEC), Pitipana, Homagama, Sri Lanka
  • University of Sri Jayewardenepura, Department of Physics, Nugegoda, Sri Lanka
  • University of Sri Jayewardenepura, Faculty of Applied Sciences, Center for Nanocomposite Research, Nugegoda, Sri Lanka
  • University of Kelaniya, Department of Chemistry, Kelaniya, Sri Lanka
Bibliografia
  • 1. Hasan M.K., Shahriar A., Jim K.U., Water pollution in Bangladesh and its impact on public health, Heliyon 2019, August, 1, 5(8), DOI: 10.1016/j.heliyon.2019.e02145.
  • 2. Kozisek F., Regulations for calcium, magnesium, or hardness in drinking water in the European Union member states, Regulatory Toxicology and Pharmacology 2020, April, 1, 112, 104589. DOI: 10.1016/j.yrtph.2020.104589.
  • 3. Zhao X., Song L., Fu J., Tang P., Liu F., Adsorption characteristics of Ni (II) onto MA–DTPA/PVDF chelating membrane, Journal of Hazardous Materials 2011, May, 30, 189(3), 73240 40, DOI: 10.1016/j.jhazmat.2011.03.061.
  • 4. Zeppenfeld K., Electrochemical removal of calcium and magnesium ions from aqueous solutions, Desalination 2011, August, 15, 277(1-3), 99-105, DOI: 10.1016/j.desal. 2011.04.005.
  • 5. Amarasooriya A.A., Kawakami T., Removal of fluoride, hardness and alkalinity from groundwater by electrolysis, Groundwater for Sustainable Development 2019, October, 1, 9, 100231, DOI: 10.1016/j.gsd.2019.100231.
  • 6. Wang Y., Ju L., Xu F., Tian L., Jia R., Song W., Li Y., Liu B., Effect of a nanofiltration combined process on the treatment of high-hardness and micropolluted water, Environmental Research 2020, March, 1, 182, 109063, DOI: 10.1016/j.envres.2019.109063.
  • 7. Garba M.D., Usman M., Mazumder M.A., Al-Ahmed A., Inamuddin, Complexing agents for metal removal using ultrafiltration membranes: a review, Environmental Chemistry Letters 2019, September, 1, 17, 1195-208, DOI: 10.1007/s10311-019-00861-5.
  • 8. Hansima M.A., Makehelwala M., Jinadasa K.B., Wei Y., Nanayakkara K.G., Herath A.C., Weerasooriya R., Fouling of ion exchange membranes used in the electrodialysis reversal advanced water treatment: A review, Chemosphere 2021, January, 1, 263, 127951, DOI: 10.1016/j.chemosphere.2020.127951.
  • 9. Li Z., Wang R., Young R.J., Deng L., Yang F., Hao L., Jiao W., Liu W., Control of the functionality of graphene oxide for its application in epoxy nanocomposites, Polymer 2013, November, 1, 54(23), 6437-6446, DOI: 10.1016/j.polymer. 2013.09.054
  • 10. Sitko R., Turek E., Zawisza B., Malicka E., Talik E., Heimann J., Gagor A., Feist B., Wrzalik R., Adsorption of divalent metal ions from aqueous solutions using grapheme oxide, Dalton Transactions 2013, 42(16), 5682-5689, DOI: 10.1039/C3DT33097D
  • 11. Carolin C.F., Kumar P.S., Saravanan A., Joshiba G.J., Naushad M., Efficient techniques for the removal of toxic heavy metals from the aquatic environment: A review, Journal of Environmental Chemical Engineering 2017, June, 1, 5(3), 2782-2799, DOI: 10.1016/j.jece.2017.05.029.
  • 12. Wang S., Sun H., Ang H.M., Tadé M.O., Adsorptive remediation of environmental pollutants using novel graphenebased nanomaterials, Chemical Engineering Journal 2013, June, 15, 226, 336-347, DOI: 10.1016/j.cej.2013.04.070.
  • 13. Wang S., Peng Y., Natural zeolites as effective adsorbents in water and wastewater treatment, Chemical Engineering Journal 2010, January, 1, 156(1), 11-24, DOI: 10.1016/j.cej.2009.10.029.
  • 14. Ngah W.W., Teong L.C., Hanafiah M.M., Adsorption of dyes and heavy metal ions by chitosan composites: A review, Carbohydrate Polymers 2011, February, 1, 83(4), 1446-1456, DOI: 10.1016/j.carbpol.2010.11.004.
  • 15. Gong J.L., Zhang Y.L., Jiang Y., Zeng G.M., Cui Z..H, Liu K., Deng C.H., Niu Q.Y., Deng J.H., Huan S.Y., Continuous adsorption of Pb(II) and methylene blue by engineered graphite oxide coated sand in fixed-bed column, Applied Surface Science 2015, March, 1, 330, 148-157, DOI: 10.1016/j.apsusc.2014.11.068.
  • 16. Luo X., Wang C., Luo S., Dong R., Tu X., Zeng G., Adsorption of As(III) and As(V) from water using magnetite Fe3O4-reduced graphite oxide-MnO2 nanocomposites, Chemical Engineering Journal 2012, April, 1, 187, 45-52, DOI: 10.1016/j.cej.2012.01.073.
  • 17. Verma S., Daverey A., Sharma A., Slow sand filtration for water and wastewater treatment, A review, Environmental Technology Reviews 2017, January, 1, 6(1), 47-58, DOI: 10.1080/21622515.2016.1278278.
  • 18. Sun Q., Wang D., Li Y., Zhang J., Ye S., Cui J., Chen L., Wang Z., Butt H.J., Vollmer D., Deng X., Surface charge printing for programmed droplet transport, Nature Materials 2019, 18(9), 936-941, DOI: 10.1016/j.cjche.2019.05.003.
  • 19. Zhu Y., Murali S., Cai W., Li X., Sun J.W., Potts J.R., Ruoff R.S., Graphene and graphene oxide: Synthesis, properties, and applications, Advanced Materials 2010, 22-35, DOI: 10.1002/adma.201001068.
  • 20. Zaaba N.I., Foo K.L., Hashim U., Tan S.J., Liu W.W., Voon C.H., Synthesis of graphene oxide using modified hummers method: Solvent influence, Procedia Engineering 2017, January, 1, 184, 469-477, DOI: 10.1016/j.proeng.2017.04.118.
  • 21. Cacicedo M.L., Manzo R.M., Municoy S., Bonazza H.L., Islan G.A., Desimone M., Bellino M., Mammarella E.J., Castro G.R., Immobilized enzymes and their applications, [In:] Advances in Enzyme Technology, Elsevier 2019, January, 1, 169-200.
  • 22. Kuilla T., Bhadra S., Yao D., Kim N.H., Bose S., Lee J.H., Recent advances in graphene based polymer composites, Progress in Polymer Science 2010, November, 1, 35(11), 1350-1375, DOI: 10.1016/j.progpolymsci.2010.07.005.
  • 23. Marcano D.C., Kosynkin D.V., Berlin J.M.. Sinitskii A., Sun Z., Slesarev A., Alemany L.B., Lu W., Tour J.M., Improved synthesis of graphene oxide, ACS Nano 2010, 4, 4806-4814, DOI: 10.1021/nn1006368.
  • 24. Gao W., Majumder M., Alemany L.B., Narayanan T.N., Ibarra M.A., Pradhan B.K., Ajayan P.M., Engineered graphite oxide materials for application in water purification, ACS Applied Materials & Interfaces 2011, June, 22, 3(6), 1821-1826, DOI: 10.1021/am200300u.
  • 25. Dubey R., Bajpai J., Bajpai A.K., Green synthesis of graphene sand composite (GSC) as novel adsorbent for efficient removal of Cr(VI) ions from aqueous solution, Journal of Water Process Engineering 2015, April, 1, 5, 83-94, DOI: 10.1016/j.jwpe.2015.01.004.
  • 26. Li Z., Wang R., Young R.J., Deng L., Yang F., Hao L., Jiao W., Liu W., Control of the functionality of graphene oxide for its application in epoxy nanocomposites, Polymer 2013, November, 1, 54(23), 6437-6446, DOI: 10.1016/j.polymer. 2013.09.054.
  • 27. Sitko R., Turek E., Zawisza B., Malicka E., Talik E., Heimann J., Gagor A., Feist B., Wrzalik R., Adsorption of divalent metal ions from aqueous solutions using grapheme oxide, Dalton Transactions 2013, 42(16), 5682-5689, DOI: 10.1039/C3DT33097D.
  • 28. Sun Y., Wang Q., Chen C., Tan X., Wang X., Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques, Environ Science & Technology 2012, June, 5, 46(11), 6020-6027, DOI: 10.1021/es300720f.mental
  • 29. Zhao G., Wen T., Yang X., Yang S., Liao J., Hu J., Shao D., Wang X., Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions, Dalton Transactions 2012, 41(20), 6182-6188, DOI: 10.1039/ C2DT00054G.
  • 30. Ghenaatian H.R., Shakourian-Fard M., Kamath G., Adsorption mechanism of toxic heavy metal ions on oxygen-passivated nanopores in graphene nanoflakes, Journal of Materials Science 2020, November, 55, 15826-15844.
  • 31. Amosa M.K., Sorption of water alkalinity and hardness from high-strength wastewater on bifunctional activated carbon: process optimization, kinetics, and equilibrium studies, Environmental Technology 2016, August, 17, 37(16), 2016-2039, DOI: 10.1080/09593330.2016.1139631.
  • 32. Kumarasinghe A.R., Perera W.P., Bandara J., Rukshagini P., Jayarathe L., Liyanage J.A., Tennakone R., Bandara A., Xing C.H., Weerasooriya R., Multiple coated graphite oxide- sand composites for fluoride removal in water, Journal of Environmental Chemical Engineering 2021, April, 1, 9(2), 104962, DOI: 10.1016/j.jece.2020.104962.
  • 33. Yu H., Zhang B., Bulin C., Li R., Xing R., High-efficient synthesis of graphene oxide based on improved hummers method, Scientific Reports 2016, November, 3, 6(1), 36143, DOI: 10.1038/srep36143.
  • 34. Kottegoda I.R., Gao X., Nayanajith L.D., Manorathne C.H., Wang J., Wang J.Z., Liu H.K., Gofer Y., Comparison of few-layer graphene prepared from natural graphite through fast synthesis approach. Journal of Materials Science & Technology 2015, September, 1, 31(9), 907-12, DOI: 10.1016/j.jmst.2015.07.014.
  • 35. Patil R.A., Zodape S.P., X-ray diffraction and sem investigation of solidification/stabilization of nickel and chromium using fly ash, Journal of Chemistry 2011, December, 1, 8, S395-403, DOI: 10.1155/2011/.
  • 36. Johra F.T., Lee J.W., Jung W.G., Facile and safe grapheme preparation on a solution-based platform, Journal of Industrial and Engineering Chemistry 2014, September, 25, 20(5), 2883-2887, DOI: 10.1016/j.jiec.2013.11.022.
  • 37. Wang S., Wu L., Hu X., Zhang L., O'Donnell K.M., Buckley C.E., Li C.Z., An X-ray photoelectron spectroscopic perspective for the evolution of O-containing structures in char during gasification, Fuel Processing Technology 2018, April, 1, 172, 209-215, DOI: 10.1016/j.fuproc. 2017.12.019.
  • 38. Sadri R., Hosseini M., Kazi S.N., Bagheri S., Zubir N., Solangi K.H., Zaharinie T., Badarudin A., A bio-based, facile approach for the preparation of covalently functionalized carbon nanotubes aqueous suspensions and their potential as heat transfer fluids, Journal of Colloid and Interface Science 2017, October, 15, 504, 115-123, DOI: 10.1016/j.jcis. 2017.03.051.
  • 39. Udawatta M.M., De Silva R.C., De Silva D.S., Surface modification of Trema orientalis wood biochar using natural coconut vinegar and its potential to remove aqueous calcium ions: column and batch studies, Environmental Engineering Research 2023, February, 28(1), DOI: 10.4491/eer.2022. 617.
  • 40. Milella E., Cosentino F., Licciulli A., Massaro C., Preparation and characterisation of titania/hydroxyapatite composite coatings obtained by sol-gel process, Biomaterials 2001, June, 1, 22(11), 1425-1431, DOI: 10.1016/S0142-9612 (00)00300-8.
  • 41. Grosvenor A.P., Kobe B.A., Biesinger M.C., McIntyre N.S., Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and Interface Analysis: An International Journal Devoted to the Development and Application of Techniques for the Analysis of Surfaces, Interfaces and Thin Films 2004, December, 36(12), 1564-1574, DOI: 10.1002/sia.1984.
  • 42. Moughaoui F., Ouaket A., Eddebbagh M., Bennamara A., Abourriche A., Anbaoui Z., Berrada M., 7th International Conference on Innovation in Chemical, Agricultural, Biological and Environmental Sciences (ICABES) 2017, 59-65.
  • 43. Nethaji S., Sivasamy A., Mandal A.B., Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass, International Journal of Environmental Science and Technology 2013, March, 10, 231-242, DOI: 10.1007/s13762-012-0112-0.
  • 44. Pandey P.K., Sharma S.K., Sambi S.S., Kinetics and equilibrium study of chromium adsorption on zeolite NaX, International Journal of Environmental Science & Technology 2010, March 7, 395-404. DOI: 10.1007/BF03326149.
  • 45. Smith R.A., Biographical memoirs of fellows of the royal society, British Medical Journal 1976, April, 24, 1021.
  • 46. Afkhami A., Moosavi R., Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles, Journal of Hazardous Materials 2010, February, 15, 174(1-3), 398-403, DOI: 10.1016/j. jhazmat.2009.09.066.
  • 47. Mohan S., Kumar V., Singh D.K., Hasan S.H., Synthesis and characterization of rGO/ZrO2 nanocomposite for enhanced removal of fluoride from water: kinetics, isotherm, and thermodynamic modeling and its adsorption mechanism, RSC Advances 2016, 6(90), 87523-38, DOI: 10.1039/C5RA20601D.
  • 48. Priyadarshini B., Rath P.P., Behera S.S., Panda S.R., Sahoo T.R., Parhi P.K., IOP Conference Series: Materials Science and Engineering 2018, 310, 1, 012051, IOP Publishing.
  • 49. Nethaji S., Sivasamy A., Mandal A.B., Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass, International Journal of Environmental Science and Technology 2013, March, 10, 231-242, DOI: 10.1007/s13762-012-0112-0.
  • 50. Sharma M., Hazra S., Basu S., Kinetic and isotherm studies on adsorption of toxic pollutants using porous ZnO@ SiO2 monolith, Journal of Colloid and Interface Science 2017, October, 15, 504, 669-679, DOI: 10.1016/j.jcis.2017.06.020.
  • 51. Katsumi T., Soil excavation and reclamation in civil engineering: Environmental aspects, Soil Science and Plant Nutrition 2015, July, 10, 61(sup1), 22-29, DOI: 10.1080/00380768.2015.1020506.
  • 52. Achmad A., Kassim J., Suan T.K., Amat R.C., Seey T.L., Equilibrium, kinetic and thermodynamic studies on the adsorption of direct dye onto a novel green adsorbent developed from Uncaria gambir extract, Journal of Physical Science 2012, 23(1), 1-3.
  • 53. Singh R.K., Kumar R., Singh D.P., Graphene oxide: strategies for synthesis, reduction and frontier applications, RSC Advances 2016, 6(69), 64993-65011, DOI: 10.1039/C6RA07626B.
  • 54. Alam S.N., Sharma N., Kumar L., Synthesis of grapheme oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO), Graphene 2017, January, 10, 6(1), 1-8, DOI: 10.4236/graphene.2017.61001.
  • 55. Gao W., Majumder M., Alemany L.B., Narayanan T.N., Ibarra M.A., Pradhan B.K., Ajayan P.M., Engineered graphite oxide materials for application in water purification, ACS Applied Materials & Interfaces 2011, June, 22, 3(6), 1821-6, DOI: 10.1021/am200300u.
  • 56. Vigdorowitsch M., Pchelintsev A., Tsygankova L., Tanygina E., Freundlich isotherm: An adsorption model complete framework, Applied Sciences 2021, August, 31, 11(17), 8078, DOI: 10.3390/app11178078.
  • 57. Lee E.J., Lim K.H., A dynamic adsorption model for the gas-phase biofilters treating ethanol: Prediction and validation, Korean Journal of Chemical Engineering 2012, October, 29, 1373-1381, DOI: 10.1007/s11814-012-0063.
  • 58. Tran H.N., Applying linear forms of pseudo-second-order kinetic model for feasibly identifying errors in the initial periods of time-dependent adsorption datasets, Water 2023, March, 21, 15(6), 1231, DOI: 10.3390/w15061231.
  • 59. Wang M., Niu Y., Zhou J., Wen H., Zhang Z., Luo D., Gao D., Yang J., Liang D., Li Y., The dispersion and aggregation of graphene oxide in aqueous media, Nanoscale 2016, 8(30), 14587-14592, DOI: 10.1039/C6NR03503E.
  • 60. Jia F., Xiao X., Nashalian A., Shen S., Yang L., Han Z., Qu H., Wang T., Ye Z., Zhu Z., Huang L., Advances in grapheme oxide membranes for water treatment, Nano Research 2022, July, 15(7), 6636-6654, DOI: 10.1007/s12274-022-4273-y.
  • 61. Møllebjerg A., Meyer R.L., Biofouling Control in Water Filtration Systems. InAntibiofilm Strategies: Current and Future Applications to Prevent, Control and Eradicate Biofilms 2022, September 29, 521-551, International Publishing, Cham, Springer, DOI: 10.1007/978-3-031-10992-8_20.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c97d48d4-9833-4953-8d11-91419b2a4261
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.