PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the specific load on stability and vibrations of the multimember column with internal cracks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Slender systems are mostly studied when Euler’s load or follower load is considered. The use of those types of external loads results in well-known divergence or flutter shape of the characteristic curve. In this study, one takes into account the specific load which allows one to obtain an interesting divergence – pseudo flutter shape of characteristic curves on the external load–vibration frequency plane. The curves can change inclination angle as well as one can observe the change in vibration modes along them. The shape of those curves depends not only on the parameters of the slender system but also on loading heads that induce the specific load. In this study, one considers the slender multimember system in which cracks are present and weaken the host structure. The results of theoretical as well as numerical simulations are focused on the influence of the parameters of the loading heads on vibrations, stability, and loading capacity of the investigated system as well as on the possibility of partial reduction of unwanted crack effect.
Rocznik
Strony
art. no. e146408
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
  • Department of Mechanics and Machine Design Foundations, Czestochowa University of Technology, Czestochowa, Poland
  • Department of Civil Engineering, Czestochowa University of Technology, Czestochowa, Poland
Bibliografia
  • [1] M.E. Atay and S.B. Coskunb, “Elastic stability of Euler columns with a continuous elastic restraint using variational iteration method,” Comput. Math. Appl., vol. 58, no. 11–12, pp. 2528–2534, 2009, doi: 10.1016/j.camwa.2009.03.051.
  • [2] C.M. Wang, C.Y. Wang, and J.N. Reddy, Exact solutions for buckling of structural members, CRC Press LLC, Florida, USA, 2005.
  • [3] A. Williams, “Elastic instability”, in Structural Analysis in theory and practice, Elsevier, 2009, pp. 71–99, doi: 10.1016/B978-1-85617-550-0.00004-X.
  • [4] W. Sochacki, S. Garus, and J. Garus, “Influence of material defects on the dynamic stability of the bernoulli-euler beam,” Arch. Metall. Mater., vol. 66, no. 2, pp. 519–522, 2021, doi: 10.24425/amm.2021.135887.
  • [5] M. Beck, “Die knicklast des einseitig eingespannten, tangential gedrückten Stabes,” J. Appl. Math. Phys.-ZAMP, vol. 3, pp. 225–228, 1952, doi: 10.1007/BF02008828.
  • [6] A. Gajewski, “Vibration and stability of a non-prismatic column compressed by non-conservative forces in non-linear creep conditions,” J. Sound Vibr., vol. 248, no. 2, pp. 315–327, 2001
  • [7] G. Herrmann and R.W. Bungay, “One the stability of elastic systems subjected to non-conservative forces”, J. Appl. Mech., vol. 31, pp. 435–440, 1964.
  • [8] J.B. Ryu, Y. Sugiyama, K.B. Yim, and G.S. Lee, “Dynamic stability of an elastically restrained column subjected to triangulary distributed subtangential forces,” Comput. Struct., vol.76. pp. 611–619, 2000.
  • [9] K. Sato, “Instability of a clamped-elastically restrained Timoshenko column carrying a tip load subjected to a follower force,” J. Sound Vibr., vol. 194, no. 4, pp. 623–630, 1996.
  • [10] T.E. Smith and G. Herrman, “Stability of a beam on an elastic foundation subjected to a follower force,” J. Appl. Mech., vol. 39, pp. 628–629, 1972
  • [11] Y. Sugiyama, K. Katayama, and K. Kiriyama, “Experimental verification of dynamic stability of vertical cantilevered columns subjected to a sub-tangential force,” J. Sound Vibr., vol. 236, no. 2, pp. 193–207, 2000
  • [12] H. Leipholz, “Aspects of dynamic stability of structures,” J. Eng. Mech. Div., vol. 4, pp. 109–124, 1975.
  • [13] A.N. Kounadis, “Divergence and flutter instability of elastically restrained structures under follower forces,” Int. J. Eng. Sci., vol. 19, no. 4, pp. 553–562, 1981.
  • [14] J. Przybylski, “The role of prestressing in establishing regions of instability for a compound column under conservative or non-conservative load,” J. Sound Vibr., vol. 231, no. 2, pp. 291–305, 2000.
  • [15] A.N. Kounadis, “The existence of regions of divergence instability for nonconservative systems under follower forces,” Int. J. Solids Struct., vol. 19, no. 8, pp. 725–733, 1983.
  • [16] A. Di Egidio, A. Luongo, and A. Paolone, “Linear and non-linear interactions between static and dynamic bifurcations of damped planar beams,” Int. J. Non-Linear Mech., vol. 42, pp. 88–98, 2007.
  • [17] A.N. Kounadis, “Stability of elastically restrained Timoshenko cantilevers with attached masses subjected to a follower force,” J. Appl. Mach., vol. 44, pp. 731–736, 1977.
  • [18] A. Flax, “Divergence of cantilever columns under combined conservative and follower loads,” J. Appl. Mech.-Trans. ASME, vol. 51, no. 2, pp. 187–198, 1984.
  • [19] L. Tomski and J. Szmidla, “Vibration and stability of column subjected to generalized load by a force directed towards a pole,” J. Theor. Appl. Mech., vol. 42, no. 1, pp. 163–193, 2004.
  • [20] L. Tomski and S. Uzny, “The new realization of the specific load – free vibrations of a column,” in Dynamical Systems, Analytical/Numerical Methods, Stability, Bifurcation and Chaos, Łódź, Wydawnictwo Politechniki Łódzkiej, 2011, pp. 301–306.
  • [21] L. Tomski, M. Gołębiowska-Rozanow, and J. Szmidla, “Free vibration of a column loaded by a force and bending moment,” Vibr. Phys. Syst., vol. 16, pp. 317–319, 1980.
  • [22] P. Obara and W. Gilewski, “Dynamic stability of moderately thick beams and frames with the use of harmonic balance and perturbation methods, ”Bull. Pol. Acad. Sci. Tech. Sci., vol. 64, no. 4, pp. 739–750, 2016.
  • [23] L. Mazurkiewicz, D. Kolodziejczyk, K. Damaziak, J. Malachowski, M. Klasztorny, and P. Baranowski, “Load carrying capacity numerical study of I-beam pillar structure with blast protective panel,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 61, no. 2, pp. 451–457, 2013.
  • [24] T.G. Chondros and T.G. Dimarogonas, “Dynamic sensivity of structures to cracks,” J. Vib. Acoust. Stress Reliab. Des., vol. 111, pp. 251–256, 1989.
  • [25] T.G. Chondros, “The continuous crack flexibility model for crack identification,” Fatigue Fract. Eng. Mater. Struct., vol. 24, pp. 643–650, 2001.
  • [26] T.G. Chondros, T.G. Dimarogonas, and J. Yao, “A continuous cracked beam vibration theory,” J. Sound Vibr., vol. 215, pp. 17–34, 1998
  • [27] B. Binici, “Vibration of beams with multiple open cracks subjected to axial forcem,” J. Sound Vibr., vol. 287, pp. 277–295, 2005.
  • [28] J. Lee and L.A. Bergman, “The vibration of stepped beams and rectangular plates by an elemental dynamic flexibility method,” J. Sound Vibr., vol. 171, pp. 617–640, 1994.
  • [29] N. Anifantis and A. Dimarogonas, “Stability of columns with a single crack subjected to follower and axial loads,” Int. J. Solids Struct., vol. 19, pp. 281–291, 1981.
  • [30] G.L. Qian, S.N. Gu., and J.S. Jiang, “The dynamic behavior and crack detection of a beam with a crack,” J. Sound Vibr., vol. 225, no. 1, pp. 201–208, 1990.
  • [31] M. Kucewicz, P. Baranowski, and J. Małachowski, “Dolomite fracture modeling using the Johnson-Holmquist concrete material model: Parameter determination and validation,” J. Rock Mech. Geotech. Eng., vol. 13, no. 2, pp. 335–350, 2021.
  • [32] L. Tomski and S. Uzny, “Vibrations and stability of a column subjected to the specific load realized by circular elements of heads,” Mech. Mech. Eng., vol. 17, pp.197–206, 2013.
  • [33] L. Tomski et. al., “Drgania swobodne i stateczność układów smukłych poddanych obciążeniu konserwatywnemu i nie konserwatywnemu,” Warszawa, WNT, 2012. (in Polish)
  • [34] K. Sokół, “An influence of the parameters of the loading heads on stability and free vibrations of a damaged column subjected to a specific load,” J. Vibroeng., vol. 20, no. 3, pp. 1299–1310, 2018.
  • [35] K. Sokół, “The control of stability of a column subjected to specific load,” J. Appl. Math. Comput. Mech., vol. 18, no. 4, pp. 8594, 2019
  • [36] K. Sokół and S. Uzny, “Stability of a damaged slender structure loaded by a force directed towards a positive pole,” in Engineering Mechanics 2016, 2016, pp. 514–517.
  • [37] S. Uzny, K. Sokół, and M. Osadnik, “Influence of amplitude on free vibration frequency of a partially tensioned column,” in Engineering Mechanics 2016, 2016, pp. 562–565
  • [38] J. Przybylski, “Drgania i stateczność dwuczłonowych układów prętowych wstępnie sprężonych przy obciążeniach niezachowawczych,” Częstochowa, Wydawnicwto PCz, 2002.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c97aa17d-1dd3-47a7-b5ef-66f26100d7c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.