

Safety and Reliability of Systems and Processes, Summer Safety and Reliability Seminar 2020
© Gdynia Maritime University. All rights reserved.
DOI: 10.26408/srsp-2020-13

183

Malinowski Jacek 0000-0002-4413-1868
Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland, jacek.malinowski (at) ibspan.waw.pl

A fast method for enumerating all minimal d-cut-sets in a flow network

Keywords

flow network, component flow capacity, required flow, maximum flow, min-d-cut-set, min-cut-set

Abstract

A d-cut-set in a flow network is a set of components whose removal or blockage causes the maximum flow

(MF) to fall below value d, provided that in fully operational network MF is greater or equal to d. A min-d-cut-

set is a d-cut set such that it does not contain any other d-cut-set. In turn, a cut-set is a set of components whose

removal disconnects the source and the sink, which results in MF being equal to 0. A min-cut-set contains

no other cut-set. The method works as follows: the min-cut-sets are ordered according to increasing flow

capacities, then from every min-cut-set a number of d-cut-sets are generated and each of them is checked

for being minimal and unique. The method features two different algorithms respectively applied if 𝛷(𝐶) < 2𝑑

or 𝛷(𝐶) ≥ 2𝑑. 𝐶 is the min-cut-set from which d-cut-sets are generated, and 𝛷(𝐶) is the flow capacity of 𝐶.

This distinction results in quick generation of min-d-cut-sets without finding many non-d-cut-sets or non-

minimal d-cut-sets. Compared to the similar methods, the new one is highly efficient, due to several original

solutions, e.g. an efficient method of checking the redundancy of candidates for min-d-cut-sets. Min-d-cut-sets

have two main applications. First, they can be used to compute various reliability characteristics of flow

networks. Second, the knowledge of these sets facilitates or even enables management and maintenance

of various flow networks such as data transmission, water, power supply, or traffic networks, field drainage

systems, etc.

1. Introduction

In this chapter two efficient algorithms are proposed

for the purpose of enumerating all minimal d-cut-sets

in a flow network with one source and one sink node.

Although this topic has been studied by several

authors (see [2], [5], [9] and [12], where the last

paper contains a comprehensive literature survey),

the technique presented herein differs significantly

from those applied in the above papers and

features several original solutions aimed at high

computational efficiency.

Let D be a set of components (links and/or nodes) in

a flow network with one source and one sink node. D

is called a d-cut-set if the failure of all components in

D causes the maximum flow in the network to fall

below D value d (d may be regarded as the required

network capacity). Clearly, this definition makes

sense if the maximum flow in the fully operational

network (all its components are in operation) is

greater than or equal to d. Further, D will be called a

minimal-d-cut-set (abbreviated to min-d-cut-set or

m-d-c-s) if no subset of D is a d-cut-set. It should be

noted that min-d-cut-sets can be named differently

throughout the literature, e.g. the term “subset cuts”

is used in [2] and [5], but the former term seems

more self-explanatory.

For the theoretical considerations conducted in the

next section we will need the well-known Ford-

Fulkerson theorem stating that the maximum flow

from the source to the sink node is equal to the

smallest capacity of a minimal cut-set (see [6]).

A cut-set is a set of components whose failure results

in topological disconnection between the source and

the sink node; note that cut-sets should be

distinguished from d-cut-sets. A minimal cut-set

(shortened to min-cut-set) contains no other cut-set.

The capacity of a cut-set or d-cut-set is the sum

of capacities of all its components.

As stated in the abstract, the presented method

consists of two algorithms, both of which use

min-cut-sets as the initial data, as the algorithms of

other cited authors do. From each min-cut-set a

number of d-cut-sets are generated; each one is

checked for being minimal and unique. This leads to

Malinowski Jacek

184

finding all min-d-cut-sets. The method uses one of

two algorithms, depending on whether 𝛷(𝐶) < 2𝑑

or Φ(C) ≥ 2d, where C denotes a min-cut-set from

which min-d-cut sets are generated, and Φ(C)

denotes the capacity of C. The different handling of

the cases Φ(C) < 2d and Φ(C) ≥ 2d, not encountered

in other relevant papers, significantly accelerates the

enumeration procedure. Most importantly, it greatly

reduces the number of non-d-cut-sets that are

generated, and ensures that the produced d-cut-sets

include only a small number of non-minimal ones.

Other advantages of this approach are given in

Sections 4 and 5.

As indicated above, the method requires all min-cut-

sets to be found in advance. The problem of finding

them is a long studied one and there exist multiple

algorithms for that purpose, presented e.g. in [1], [7],

and [11].

The list of all (or some) min-d-cut-sets can be used

for a number of practical purposes. First of all, it can

be used for computing the network reliability which

in this context is defined as the probability that the

maximum flow is greater or equal to 𝑑. However,

other uses are also possible, e.g. for drainage

or traffic system control.

The paper is organized as follows. In Section 2 the

used notation and preliminary assumptions concern-

ing the studied network model are presented. Section

3 contains the necessary theoretical background for

the algorithms developed in Sections 5 and 6. In

Section 4 a general description of the newly

developed method is given, along with a comparison

to recent results published in [2] and [5]. In

Sections 5 and 6 the algorithms for the cases

𝛷(𝐶) < 2𝑑 and 𝛷(𝐶) ≥ 2𝑑 respectively are

presented. They are illustrated by their application to

an example network, and each step is analyzed

in detail. Each of the Sections 3, 5 and 6 begins with

several lemmas which collectively constitute the

method’s mathematical background. Some of the

lemmas from Section 3 can most likely be found in

earlier works, but their proofs are provided for the

sake of self-containment. In turn, the lemmas from

Sections 5 and 6 are the author’s original results.

In Section 7 the numerical complexity of the new

method is estimated. Section 8 contains its detailed

comparison with the method presented in [2]. In

Section 9 a number of conclusive remarks are given

with some hints regarding possible extensions of the

method to networks modeled by (partly) directed

graphs, networks with multiple sources and/or sinks,

or networks with multi-state components.

2. Notation and preliminary assumptions

 𝐺 = (𝑉, 𝐸): a network defined as a graph 𝐺

with 𝑉 and 𝐸 as the sets of nodes and links;

 𝑐𝑎𝑟𝑑(𝑆): the number of elements in a set 𝑆;

 𝑛: the number of components in 𝐺,

𝑛 = 𝑐𝑎𝑟𝑑(𝐸) + 𝑐𝑎𝑟𝑑(𝑉);

 𝑥𝑖: the state of the 𝑖-th component; 𝑥𝑖 = 1

or 𝑥𝑖 = 0 if the 𝑖-th component is operable

or failed;

 𝑠, 𝑡: the source and the sink nodes;

 𝑠 − 𝑡 path: a path from 𝑠 to 𝑡 consisting

of components of 𝐺;

 Γ𝑠,𝑡
𝐺 (𝑥): the 𝑠 − 𝑡 connectivity function of 𝐺,

i.e. Γ𝑠,𝑡
𝐺 (𝑥) = 1 if there is an 𝑠 − 𝑡 path

composed of operable components,

otherwise Γ𝑠,𝑡
𝐺 (𝑥) = 0;

 cut-set: a set of components whose removal

or failure disconnects 𝑠 and 𝑡;

 min-cut-set: a cut-set such that no its subset

is a cut-set;

 𝑚: the number of all min-cut-sets of 𝐺;

 𝐶1, … , 𝐶𝑚: all min-cut-sets of 𝐺;

 𝜑(𝑐): the flow capacity of a component 𝑐,

𝑐 ∈ 𝐸 ∪ 𝑉;

 large capacity component: a component 𝑐,

such that 𝜑(𝑐) ≥ 𝑑;

 𝛷(𝐶): the total flow capacity of all

components in a set 𝐶, 𝐶 ⊆ E ∪ V, i.e.

𝛷(𝐶) = ∑ 𝜑(𝑐)𝑐∈𝐶 ;

 Ψ𝑚𝑎𝑥(𝐺): the maximal flow from 𝑠 to 𝑡

through 𝐺;

 𝐶, 𝐶′, 𝐷, 𝐷′, 𝐷1, 𝐷2: sets of network

components;

 ⊂, ⊆: the “included in and not equal to” and

“included in or equal to” relations between

sets;

 𝐺\𝐷: the subgraph of 𝐺 obtained by

removing all the components of 𝐷;

 d-cut-set: a set 𝐷 such that Ψ𝑚𝑎𝑥(𝐺\𝐷) < 𝑑,

i.e. 𝐷 is a set of components whose removal

or failure causes the maximal flow through 𝐺

to fall below 𝑑;

 min-d-cut-set: a short form of “minimal

d-cut-set”; 𝐷 is a min-d-cut-set if no subset

of 𝐷 is a d-cut-set, i.e. Ψ𝑚𝑎𝑥(𝐺\𝐷′) < 𝑑 for

each 𝐷′ ⊂ 𝐷;

 m-d-c-s candidate in 𝐶𝑘: a short form of

“minimal d-cut-set candidate in 𝐶𝑘”; D

is a m-d-c-s candidate in 𝐶𝑘 if 𝐷 ⊆ 𝐶𝑘,

𝛷(𝐶𝑘\𝐷) < 𝑑 and 𝛷(𝐶𝑘\𝐷′) ≥ 𝑑 for each

𝐷′ ⊂ 𝐷;

 redundant set: a set is redundant in a family

of sets if it contains or is equal to another set

in this family;

 IR: internal redundancy; a d-cut-set 𝐷 is inte

rnally redundant in 𝐶𝑘 if 𝐷 ⊆ 𝐶𝑘 and there

A fast method for enumerating all minimal d-cut-sets in a flow network

185

exists a d-cut-set 𝐷′ such that 𝐷′ ⊂ 𝐷;

 ER: external redundancy; a d-cut-set 𝐷 is

externally redundant in 𝐶𝑘, 𝑘 ≥ 2, if 𝐷 ⊆ 𝐶𝑘

and there exists a d-cut-set 𝐷′ such that

𝐷′ ⊂ 𝐷 and 𝐷′ ⊆ 𝐶𝑗 for a certain 𝑗 < 𝑘;

 𝐴(𝐶, 𝐷): the set of all elements in 𝐶\𝐷

preceding the last element in 𝐷, e.g. if

𝐶 = {1, … ,10} and 𝐷 = {2, 4, 6}, then

𝐴(𝐶, 𝐷) = {1, 3, 5};

 𝐵(𝐶, 𝐷): the set of all elements in 𝐶\𝐷

succeeding the last element in 𝐷, e.g. if 𝐷

and 𝐶 are defined as above then 𝐵(𝐶, 𝐷)
= {7, … , 10};

 𝜇𝐷 or 𝜇(𝐷): the component of 𝐷 with

the smallest flow capacity, i.e. 𝜑(𝜇𝐷)
= 𝑚𝑖𝑛 [𝜑(𝑑): 𝑑 ∈ 𝐷].

For convenience, we will equate the component with

their indices throughout the whole paper, i.e. the

components 𝑐1, 𝑐2,, etc. of G will be referred to as 1,

2, etc.

Preliminary assumption

We assume that 𝐶𝑘, 𝑘 ∈ {1, … , 𝑚} are

ordered according to the increasing flow

capacity, as required by the proposed

method. Hence, from the Ford-Fulkerson

theorem we have:

 Ψ𝑚𝑎𝑥(𝐺) = 𝛷(𝐶1) ≤. . . ≤ 𝛷(𝐶𝑚). (1)

We also assume that Ψ𝑚𝑎𝑥(𝐺) ≥ 2𝑑.

3. Theoretical basis of the proposed method

The proposed method is based on several graph-

theoretical properties of flow networks, which, for

the sake of clarity, will be formulated as separate

lemmas and two key theorems.

Lemma 3.1

If 𝐷 is a set of network components, then all

min-cut-sets of 𝐺\𝐷 are obtained by removing all

redundant sets in the family (𝐶1\𝐷),…, (𝐶𝑚\𝐷).

Proof: Let us first assume that 𝐷 fulfills the

following condition: 𝐶1\𝐷 ≠ ∅ for 𝑘 ∈ {1, … , 𝑚},

i.e. none of the sets 𝐶1, … , 𝐶𝑚 is included in 𝐷. It is a

well-known fact from the reliability theory that

𝐶1, … , 𝐶𝑚 are all min-cut-sets of 𝐺 if and only if

 𝛤𝑠,𝑡
𝐺 (𝑥) = ⋀ ⋁ 𝑥𝑖𝑖∈𝐶𝑘

𝑚
𝑘=1 . (2)

The 𝑠 − 𝑡 connectivity function of 𝐺\𝐷 is obtained

by setting 𝑥𝑖 to 0 for 𝑖 ∈ 𝐷 in 𝛤𝑠,𝑡
𝐺 given by (2). Let

𝐾𝐷 be obtained from {1, … , 𝑚} by removing each

𝑘 such that (𝐶𝑘\𝐷) is redundant in (𝐶1\𝐷),…,
(𝐶𝑚\𝐷). We have:

 Γ𝑠,𝑡
𝐺\𝐷(𝑥) = ⋀ ⋁ 𝑥𝑖𝑖∈𝐶𝑘\𝐷

𝑚
𝑘=1 = ⋀ ⋁ 𝑥𝑖𝑖∈𝐶𝑘\𝐷𝑘∈𝐾𝐷

 (3)

which ends the first part of the proof.

Let now 𝐶𝑘 ⊆ 𝐷 for a certain 𝑘 ∈ {1, … , 𝑚}. It holds

that 𝐶𝑘\𝐷 = ∅ ⊆ 𝐶𝑗\𝐷 for each 𝑗 ≠ 𝑘, i.e. each

𝐶𝑗\𝐷 is redundant in regard to 𝐶𝑘\𝐷 which is the

only (empty) min-cut-set of 𝐺\𝐷. Indeed, since 𝐶𝑘 is

a cut-set and 𝐶𝑘 ⊆ 𝐷, there is no 𝑠 − 𝑡 path in 𝐺\𝐷,

hence no components have to be removed from 𝐺\𝐷

in order to separate 𝑠, and 𝑡, which means that the

empty set is the only min-cut-set of 𝐺\𝐷. The whole

proof is thus completed.

Lemma 3.2

If 𝐷 is a d-cut-set, then there exists a min-cut-set 𝐶𝑘,

𝑘 ∈ {1, … , 𝑚}, such that 𝐶𝑘 ∩ 𝐷 is also a d-cut-set.

In other words, each d-cut-set is redundant w.r.t. a

d-cut-set included in one of the min-cut-sets.

Proof: Let 𝐷 be any set of network components, not

necessarily a d-cut-set. We will show that

 Ψ𝑚𝑎𝑥(𝐺\𝐷) = 𝑚𝑖𝑛[𝛷(𝐶𝑘\𝐷): 𝑘 ∈ 𝐾𝐷]
 = 𝑚𝑖𝑛[𝛷(𝐶𝑘\𝐷): 𝑘 ∈ {1, … , 𝑚}]. (4)

The first equality in (4) follows from Lemma 3.1 and

the Ford-Fulkerson theorem. For the proof of the

second one let us note that for each 𝑘 ∉ 𝐾𝐷 there

exists 𝑗 ∈ 𝐾𝐷 such that (𝐶1\𝐷) ⊆ (𝐶𝑘\𝐷), hence

𝛷(𝐶1\𝐷) ≤ 𝛷(𝐶𝑘\𝐷) which means that each set

redundant in (𝐶1\𝐷),…, (𝐶𝑚\𝐷) is irrelevant for

determining the second minimum in (4). Let

 𝑘∗(𝐷) = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑘{1,…,𝑚} (𝐶𝑘\𝐷) (5)

i.e. 𝑘∗(𝐷) is one of these 𝑘 for which (𝐶𝑘\𝐷)

attains its minimum over 𝑘 ∈ {1, … , 𝑚}. Replacing 𝐷

with 𝐶𝑘∗(𝐷) ∩ 𝐷 in (4) yields:

 Ψ𝑚𝑎𝑥[𝐺\(𝐶𝑘∗(𝐷) ∩ 𝐷)]

 = 𝑚𝑖𝑛𝑘∈{1,…,𝑚} 𝛷[𝐶𝑘\(𝐶𝑘∗(𝐷) ∩ 𝐷)]. (6)

Let us note that the right hand side of (6) fulfills the

following inequality:

 𝑚𝑖𝑛𝑘∈{1,…,𝑚} 𝛷[𝐶𝑘\(𝐶𝑘∗(𝐷) ∩ 𝐷)]

 ≤ 𝛷[𝐶𝑘∗(𝐷)\(𝐶𝑘∗(𝐷) ∩ 𝐷)]. (7)

In turn, the identity 𝑃\𝑄 = 𝑃\(𝑃 ∩ 𝐷), where 𝑃 and

𝑄 are arbitrary sets, yields:

Malinowski Jacek

186

 𝛷[𝐶𝑘∗(𝐷)\(𝐶𝑘∗(𝐷) ∩ 𝐷)] = 𝛷(𝐶𝑘∗(𝐷)\𝐷). (8)

From (6), (7) and (8) we obtain:

 Ψ𝑚𝑎𝑥[𝐺\(𝐶𝑘∗(𝐷) ∩ 𝐷)] ≤ 𝛷(𝐶𝑘∗(𝐷)\𝐷). (9)

Let now 𝐷 be a d-cut-set. This assumption along

with (4), (5) and (9) yield:

 𝑑 > Ψ𝑚𝑎𝑥(𝐺\𝐷) = 𝛷(𝐶𝑘∗(𝐷)\𝐷)

 ≥ Ψ𝑚𝑎𝑥[𝐺\(𝐶𝑘∗(𝐷) ∩ 𝐷)] (10)

which means that 𝐶𝑘∗(𝐷) ∩ 𝐷 is a d-cut-set. Thus,

𝐶𝑘∗(𝐷) is the sought min-cut-set, Q.E.D.

Theorem 1

Each min-d-cut-set is a subset of a certain min-cut-

set, i.e. If 𝐷 is a min-d-cut-set, then there exists 𝐶𝑘,

such that 𝐷 ⊆ 𝐶𝑘, 𝑘 ∈ {1, … , 𝑚}. More precisely,

𝐷 ⊆ 𝐶𝑘∗(𝐷), where 𝑘∗(𝐷) is defined by (6). It also

holds that 𝛷(𝐶𝑘∗(𝐷)\𝐷) < 𝑑.

Proof: If 𝐷 is a min-d-cut-set, then, by Lemma 3.2,

𝐶𝑘∗(𝐷) ∩ 𝐷 is a d-cut-set. Since 𝐷 is a min-d-cut-set

and 𝐶𝑘∗(𝐷) ∩ 𝐷 ⊆ 𝐷, it holds that 𝐶𝑘∗(𝐷) ∩ 𝐷 = 𝐷,

because there cannot be a d-cut-set smaller than 𝐷. In

consequence 𝐷 ⊆ 𝐶𝑘∗(𝐷). The postulated inequality

follows from (10).

Theorem 2

Let 𝐷 be a subset of a min-cut-set, i.e. 𝐷 ⊆ 𝐶𝑘, for a

certain 𝑘 ∈ {1, … , 𝑚}.. Then 𝐷 is a min-d-cut-set,

externally non-redundant in 𝐶𝑘, if and only if the

following conditions hold:

1. 𝛷(𝐶𝑘\𝐷) < 𝑑,

2. 𝛷(𝐶𝑘\𝐷′) ≥ 𝑑 for each 𝐷′ ⊆ 𝐷,

3. 𝛷(𝐶𝑗\𝐷) ≥ 𝑑 for each 𝑗 < 𝑘, 𝑘 ≥ 2.

Such a set 𝐷 is referred to as a min-d-cut-set

obtained from 𝐶𝑘.

Proof: We first prove the rightward implication.

Let 𝐷 be a min-d-cut-set non-redundant w.r.t. any

min-d-cut-set which is a subset of 𝐶𝑗, 𝑗 < 𝑘.

Assuming that Condition 1 does not hold, i.e.

𝛷(𝐶𝑘\𝐷) ≥ 𝑑, for each 𝑗 > 𝑘 we have:

 𝛷(𝐶𝑗\𝐷) = 𝛷(𝐶𝑗\𝐶𝑗 ∩ 𝐷)

 = 𝛷(𝐶𝑗) − 𝛷(𝐶𝑗 ∩ 𝐷) ≥ 𝛷(𝐶𝑘) − 𝛷(𝐷)

 = 𝛷(𝐶𝑘\𝐷) ≥ 𝑑. (11)

The first two equalities in (11) are due to the fact that

𝐶𝑗\𝐷 = 𝐶𝑗\𝐶𝑗 ∩ 𝐷 and 𝐶𝑗 ∩ 𝐷 ⊆ 𝐶𝑗. The first

inequality in (11) is a consequence of the second

preliminary assumption in Section 2 and the fact that

𝛷(𝐶𝑗 ∩ 𝐷) ≤ 𝛷(𝐷). The third equality is due to the

inclusion 𝐷 ⊂ 𝐶𝑘. However, since 𝐷 is a d-cut-set,

by virtue of (4) we have:

 Ψ𝑚𝑎𝑥(𝐺\𝐷)

 = 𝑚𝑖 𝑛[𝛷(𝐶1\𝐷), … , 𝛷(𝐶𝑚\𝐷)] < 𝑑, (12)

hence it must hold that 𝛷(𝐶𝑗∗\𝐷) < 𝑑 for a certain

𝑗∗ < 𝑘. In consequence,

 𝛷(𝐶𝑗∗\𝐷) = 𝛷(𝐶𝑗∗\𝐶𝑗∗ ∩ 𝐷) < 𝑑 (13)

which means that

 Ψ𝑚𝑎𝑥(𝐺\𝐷′)

 = 𝑚𝑖 𝑛[𝛷(𝐶1\𝐷′), … , 𝛷(𝐶𝑚\𝐷′)] < 𝑑, (14)

where 𝐷′ = 𝐶𝑗∗ ∩ 𝐷. Formula (14) and the inclusion

𝐷′ ⊆ 𝐷 yield that 𝐷 is redundant w.r.t. 𝐷′ which

is a subset of 𝐶𝑗∗ . This contradicts the non-

redundancy assumption. Thus, Condition 1 holds, i.e.

𝛷(𝐶𝑘\𝐷) < 𝑑. Let us note that Condition 3 is also

fulfilled, because, as just shown, it cannot hold that

𝛷(𝐶𝑗\𝐷) < 𝑑 for a certain 𝑗 < 𝑘. Finally,

Condition 2 is fulfilled too, because otherwise (14)

would hold for a certain 𝐷′ ⊂ 𝐷 and 𝐷 would be

redundant w.r.t. 𝐷′.
Let us now prove the opposite implication.

Condition 1 and formula (4) yield that

 Ψ𝑚𝑎𝑥(𝐺\𝐷) ≤ 𝛷(𝐶𝑘\𝐷) ≤ 𝑑 (15)

i.e. 𝐷 is a d-cut-set in 𝐺. In order to prove that 𝐷 is

minimal it has to be shown that Ψ𝑚𝑎𝑥(𝐺\𝐷′) ≥ 𝑑 for

each 𝐷′ ⊂ 𝐷. Let us take any 𝐷′ such that 𝐷′ ⊂ 𝐷.

Formula (4) yields:

 Ψ𝑚𝑎𝑥(𝐺\𝐷′) = 𝑚𝑖𝑛𝑗∈{1,…,𝑚}𝛷(𝐶𝑗\𝐷′). (16)

Let 𝑗 < 𝑘. Since 𝐷′ ⊂ 𝐷, by virtue of Condition 3 we

have:

 𝛷(𝐶𝑗\𝐷′) ≥ 𝛷(𝐶𝑗\𝐷) ≥ 𝑑 (17)

while Condition 2 implies that

 𝛷(𝐶𝑗\𝐷′) ≥ 𝑑. (18)

Finally, with regard to (18), for 𝑗 > 𝑘 we have:

 𝛷(𝐶𝑗\𝐷′) = 𝛷(𝐶𝑗\𝐶𝑗 ∩ 𝐷′)

 = 𝛷(𝐶𝑗) − 𝛷(𝐶𝑗 ∩ 𝐷′) ≥ 𝛷(𝐶𝑘) − 𝛷(𝐷′)

 = 𝛷(𝐶𝑘\𝐷′) ≥ 𝑑. (19)

A fast method for enumerating all minimal d-cut-sets in a flow network

187

Formula (19) is justified analogously to (11).

Formulas (16)-(19) yield that Ψ𝑚𝑎𝑥(𝐺\𝐷′) ≥ 𝑑,

hence, in view of (15), 𝐷 is a min-d-cut-set in 𝐺.

It now remains to show the external non-redundancy

of 𝐷. Let 𝐷′ be an externally non-redundant

min-d-cut-set included in a certain 𝐶𝑗, 𝑗 < 𝑘. If we

assume that 𝐷 is redundant w.r.t. 𝐷′, then 𝐷 = 𝐷′

(𝐷′ ⊂ 𝐷 cannot hold, because 𝐷 would not be

minimal). Also, 𝛷(𝐶𝑗\𝐷′) < 𝑑, because 𝐷′ is

included in 𝐶𝑗, hence it fulfills Condition 1 as shown

in the first part of the proof. Thus, 𝛷(𝐶𝑗\𝐷)

= 𝛷(𝐶𝑗\𝐷′) < 𝑑 which contradicts Condition 3. If

𝐷′ is an externally redundant min-d-cut-set included

in 𝐶𝑗, then it is also included in a certain 𝐶𝑗′, 𝑗
′ < 𝑗,

where it is non-redundant. Redundancy of 𝐷 w.r.t. 𝐷′

yields that 𝛷(𝐶𝑗′\𝐷) = 𝛷(𝐶𝑗′\𝐷′) < 𝑑 which also

contradicts Condition 3. This completes the whole

proof.

Remark: Let us note that if 𝐷 fulfills Conditions 1

and 2, then 𝐷 is a m-d-c-s candidate in 𝐶𝑘. Also

note that if Condition 3 is not fulfilled, then 𝐷 is

externally redundant w.r.t. 𝐶𝑗 ∩ 𝐷 for a certain 𝑗 < 𝑘.

If, in turn, Condition 3 holds, then 𝐷 is an externally

non-redundant min-d-cut-set.

Lemma 3.3

Let 𝐷 be a subset of 𝐶𝑘 such that

𝛷[(𝐶𝑘\𝐷) ∪ 𝜇𝐷] ≥ 𝑑, where 𝜇𝐷 is the component of

𝐷 with the smallest capacity. It then holds that

𝛷[(𝐶𝑘\𝐷′) ≥ 𝛷[(𝐶𝑘\𝐷) ∪ 𝜇𝐷] for each 𝐷′ ⊂ 𝐷.

Proof: Let 𝐷′ ⊂ 𝐷. The lemma’s assumptions yield

that 𝜇𝐷 ∉ 𝐶𝑘\𝐷 and 𝐷′ ⊂ 𝐶𝑘. Thus

 𝛷[(𝐶𝑘\𝐷) ∪ 𝜇𝐷] = 𝛷(𝐶𝑘) − 𝛷(𝐷) + 𝜑(𝜇𝐷) (20)

and

 𝛷(𝐶𝑘\𝐷′) = 𝛷(𝐶𝑘) − 𝛷(𝐷′). (21)

Also, 𝑐𝑎𝑟𝑑(𝐷′) ≤ 𝑐𝑎𝑟𝑑(𝐷\𝜇𝐷) and 𝐷′ is obtained

from 𝐷 by removing components with capacities no

smaller than 𝜑(𝜇𝐷), hence

 𝛷(𝐷′) ≤ 𝛷(𝐷) − 𝜑(𝜇𝐷). (22)

Thus, finally, we have:

 𝛷(𝐶𝑘\𝐷′) ≥ 𝛷(𝐶𝑘) − 𝛷(𝐷) + 𝜑(𝜇𝐷)

 = 𝛷[(𝐶𝑘\𝐷) ∪ 𝜇𝐷]. (23)

Corollary: 𝛷(𝐶𝑘\𝐷′) ≥ 𝑑 for each 𝐷′ ⊆ 𝐷 if

and only if 𝛷[(𝐶𝑘\𝐷) ∪ 𝜇𝐷] ≥ 𝑑. Thus, 𝐷 is

a m-d-c-s candidate if 𝛷(𝐶𝑘\𝐷) < 𝑑 and

𝛷[(𝐶𝑘\𝐷) ∪ 𝜇𝐷] ≥ 𝑑. This means that Condition 2

in Theorem 2 can be replaced by the latter inequality.

Lemma 3.4

If 𝛷(𝐶𝑗\𝐶𝑘) ≥ 𝑑, for a certain 𝑗 < 𝑘, then

𝛷(𝐶𝑗\𝐷) ≥ 𝑑 for each 𝐷 ⊆ 𝐶𝑘.

Proof: If 𝐷 ⊆ 𝐶𝑘, then 𝐶𝑗\𝐶𝑘 ⊆ 𝐶𝑗\𝐷, hence

𝛷(𝐶𝑗\𝐷) ≥ 𝛷(𝐶𝑗\𝐶𝑘), and the lemma follows from

the assumption that 𝛷(𝐶𝑗\𝐶𝑘)] ≥ 𝑑.

Corollary: If the lemma’s assumption holds and 𝐷 is

a m-d-c-s candidate in 𝐶𝑘, then the check if

𝛷(𝐶𝑗\𝐷)] ≥ 𝑑 can be skipped, because it would give

a positive result. Thus, Condition 3 in Theorem 2

only needs to be verified for 𝑗 such that

𝛷(𝐶𝑗\𝐶𝑘)] < 𝑑.

Lemma 3.5

Let 𝐶𝑘∗ be the set of all “large capacity” components

in 𝐶𝑘, 𝑘 ∈ {1, … , 𝑚}. Then the following two

statements hold:

1. Each m-d-c-s candidate obtained from 𝐶𝑘

must include 𝐶𝑘∗;

2. If 𝐶𝑗∗ is a min-d-cut-set and 𝐶𝑗∗ ⊆ 𝐶𝑘∗

for a certain 𝑗 < 𝑘, then each m-d-c-s

candidate obtained from 𝐶𝑘 is redundant

w.r.t. 𝐶𝑗∗ .

Proof: Let us assume that 𝐷 is a m-d-c-s

candidate obtained from 𝐶𝑘 and 𝐷 does not include

𝐶𝑘∗. Then there exists at least one 𝑐 ∈ 𝐶𝑘∗\𝐷

and, since 𝐶𝑘∗ ⊆ 𝐶𝑘, it holds that 𝐶𝑘∗\𝐷 ⊆ 𝐶𝑘\𝐷,

hence

 𝛷(𝐶𝑘\𝐷) ≥ 𝛷(𝐶𝑘∗\𝐷) ≥ 𝜑(𝑐) ≥ 𝑑. (24)

In view of (24), 𝐷 is not a m-d-c-s candidate, which

contradicts the initial assumption. Thus Statement 1

holds. Accordingly, if 𝐷 is a m-d-c-s candidate

obtained from 𝐶𝑘, then 𝐶𝑘∗ ⊆ 𝐷. The assumption

that 𝐶𝑗∗ ⊆ 𝐶𝑘∗ yields 𝐶𝑗∗ ⊆ 𝐷, hence 𝐷 is redundant

w.r.t. 𝐶𝑗∗ , Q.E.D.

Corollary: Lemma 3.5 allows to easily ascertain if

each m-d-c-s candidate in 𝐶𝑘 is redundant in regard

to a m-d-c-s composed of large capacity components

of 𝐶𝑗, 𝑗 < 𝑘. Clearly, 𝐶𝑘 is to be omitted in the

process of generating min-d-cut-sets from min-cut-

sets.

Malinowski Jacek

188

4. The considered method in outline

Now we will present in outline the two algorithms

whose detailed pseudo-codes are given in the next

two sections. We will also briefly explain why two

algorithms have been developed instead of one.

From Theorems 1 and 2 we conclude that, in order to

find all the min-d-cut-sets of 𝐺, we have to find all

the subsets of each 𝐶𝑘, 𝑘 = 1, … , 𝑚, satisfying the

three conditions in Theorem 2. In more detail, min-d-

cut-sets are generated from each successive 𝐶𝑘,

𝑘 = 1, … , 𝑚, with the use of Alg. 1 if 𝛷(𝐶𝑘) < 2𝑑,

or Alg. 2 if 𝛷(𝐶𝑘) ≥ 2𝑑. Algorithm 1 arranges the

components of 𝐶𝑘 according to decreasing flow

capacities, then it generates successive subsets of 𝐶𝑘

and checks them for being min-d-cut-sets. In turn,

Algorithm 2 arranges the components of 𝐶𝑘

according to increasing flow capacities, then it

generates successive subsets of 𝐶𝑘 and checks their

complements for being min-d-cut-sets. The following

subset generation policy is used: in step 1 the

successive one-element subsets of 𝐶𝑘 are generated

(empty set is augmented with the successive

elements of 𝐵(𝐶𝑘,)); in step 𝑗 > 1 each 𝑗-element

subset 𝐶 of 𝐶𝑘 such that 𝐵(𝐶𝑘 , 𝐶) = is augmented

with the successive elements of 𝐵(𝐶𝑘 , 𝐶),

𝑗 = 1, … , 𝑘 − 1. For better understanding, let us

apply the above policy to the set 𝐶1 = {2, 3, 4, 5} (see

Figure 1). The following subsets are generated in the

successive steps:

 step 1 – {2}, {3}, {4}, {5};

 step 2 – {2, 3}, {2, 4}, {2, 5};

note that 𝐵(𝐶1, {2}) = {3, 4, 5};

 step 3 – {3, 4}, {3, 5};

note that 𝐵(𝐶1, {3}) = {4, 5};

 step 4 – {4, 5};

note that 𝐵(𝐶1, {4}) = {5};

 step 5 – {2, 4, 5}, {2, 3, 5}, {2, 3};

note that 𝐵(𝐶1, {2, 3}) = {4, 5};

 step 6 – {2, 4, 5};

 step 7 – {3, 4, 5};

 step 8 – {2, 3, 4, 5}.

Figure 1. An example network system (the network

structure is the same as in [2]). The links’ capacities

are given in parentheses next to the links’ numbers

This standard procedure generates one instance

of each subset of a finite set. However, if thus

obtained subset of 𝐶𝑘 is a min-d-cut-set, it is not

further augmented, because non-minimal d-cut-sets

would be generated. In consequence, the number

of subsets of 𝐶𝑘 generated by Algorithm 1 or 2 is

substantially smaller than 2𝑐𝑎𝑟𝑑(𝐶𝑘) − 1 which is the

number of all non-empty subsets of 𝐶𝑘.

The min-cut-sets of the above network, ordered

by the increasing flow capacity, are listed below.

 𝐶1 = {6, 5, 4}, 𝛷(𝐶1) = 15,

 𝐶2 = {8, 11, 4}𝛷(𝐶2) = 18,

 𝐶3 = {1, 2}, 𝛷(𝐶3) = 19,

 𝐶4 = {10, 11,9}, 𝛷(𝐶4) = 20,

 𝐶5 = {4,7,10,11}, 𝛷(𝐶5) = 20,

 𝐶6 = {6,3,1}, 𝛷(𝐶6) = 23,

 𝐶7 = {4,5,3,2}, 𝛷(𝐶7) = 25,

 𝐶8 = {5,7,6,9}, 𝛷(𝐶8) = 25,

 𝐶9 = {7,11,8,9}, 𝛷(𝐶9) = 28,

 𝐶10 = {5,10,6,8,9}, 𝛷(𝐶10) = 33,

 𝐶11 = {5,7,3,2,9}, 𝛷(𝐶11) = 35,

 𝐶12 = {5,11,3,8,1}, 𝛷(𝐶12) = 36,

 𝐶13 = {5,7,10,11,3,1}, 𝛷(𝐶13) = 38,

 𝐶14 = {5,10,3,8,2,9}, 𝛷(𝐶14) = 43.

Let 𝐶 be a currently generated subset of 𝐶𝑘, and let

𝐷 = 𝐶 (Algorithm 1) or 𝐷 = 𝐶𝑘\𝐶 (Algorithm 2).

The check whether 𝐷 is a min-d-cut-set is done as

follows. First it is checked if 𝛷(𝐶𝑘\𝐷) < 𝑑

(Condition 1 in Theorem 2). In case of a positive

check, 𝐷 is a d-cut-set in 𝐺 (see first part of the proof

of Theorem 2) and it is checked whether

𝛷[𝐶𝑘\(𝐷\{𝜇𝐷})] ≥ 𝑑 (see corollary to Lemma 3.3).

If this inequality holds, 𝐷 is marked as a

m-d-c-s candidate, i.e. in order to state whether 𝐷

is a min-d-cut-set it has yet to be verified whether

Condition 3 in Theorem 2 holds. It is important that

once 𝐷 turns out to be a m-d-c-s candidate, then 𝐶

is not further augmented, because d-cut-sets larger

than 𝐷 = 𝐶 are not min-d-cut-sets (Algorithm 1),

while subsets of 𝐷 = 𝐶𝑘\𝐶 are not even d-cut-sets

(Algorithm 2).

The different handling of the cases 𝛷(𝐶𝑘) < 2𝑑

and 𝛷(𝐶𝑘) ≥ 2𝑑 allows for obtaining m-d-c-s

candidates without first generating internally

redundant d-cut-sets (Algorithm 1), or generating

only a small number of them before a m-d-c-s candi-

date is obtained (Algorithm 2). Also, it ensures that

only a small number of non-d-cut-sets is generated

by both algorithms. Other advantages of this distinc-

tion will be given in Sections 4 and 5.

The above outlined method is an improvement of

the procedures presented in [2] and [5], also in the

context of internal and external redundancy – the

concepts introduced by the authors of the aforemen-

tioned papers, whose definitions are given in

A fast method for enumerating all minimal d-cut-sets in a flow network

189

Notation Section. It is essential to check whether

a newly generated subset of 𝐶𝑘 is internally

or externally redundant, because if it occurs

to be a min-d-cut-set, then its supersets need not

be generated, since none of them is a min-d-cut set.

Let us note that Condition 3 in Theorem 2 is

a criterion used for checking the absence of external

redundancy. Indeed, let us suppose that Condition 3

does not hold, i.e. 𝐷 is a d-cut-set obtained from 𝐶𝑘

and 𝛷(𝐶𝑗\𝐷) < 𝑑 for a certain 𝑗 < 𝑘. Since

𝐶𝑗\𝐷 = 𝐶𝑗\(𝐶𝑗 ∩ 𝐷), it follows from (4) that

Ψ𝑚𝑎𝑥(𝐺\(𝐶𝑗 ∩ 𝐷)) < 𝑑. Moreover, 𝐶𝑗 ∩ 𝐷 ⊆ 𝐶𝑗,

thus 𝐶𝑗 ∩ 𝐷 is a d-cut set obtained from 𝐶𝑗. Thus, the

inclusion 𝐶𝑗 ∩ 𝐷 ⊆ 𝐷 implies that 𝐷 is externally

redundant w.r.t. 𝐶𝑗 ∩ 𝐷. In consequence, 𝐷 is not a

min-d-cut-set, or 𝐷 is a duplicate one. Let us also

note that, in view of Condition 3 in Theorem 2, it is

only required to compare a d-cut-set obtained from

𝐶𝑘 with 𝐶𝑗, 𝑗 < 𝑘, but not with 𝐶𝑗, 𝑗 > 𝑘, in order to

state whether it is a min-d-cut-set.

5. Generating min-d-cut-sets in decreasing

flow capacities

The case 𝛷(𝐶𝑘) < 2𝑑 is handled by Algorithm 1

which requires that the components of 𝐶𝑘 be ordered

by decreasing flow capacities. Algorithm 1 is based

on the following four lemmas.

Lemma 4.1

Let 𝐶 be a subset of 𝐶𝑘 such that

1. 𝛷(𝐶𝑘\𝐶) ≥ 𝑑,

2. 𝛷(𝐶𝑘\(𝐶 ∪ {𝑏})) < 𝑑,

for a certain 𝑏 ∈ 𝐵(𝐶𝑘, 𝐶).

𝐶 ∪ {𝑏} is then a min-d-cut-set candidate in 𝐶𝑘.

The second assumption says that the failure of all

components in 𝐶 ∪ {𝑏} causes the capacity of 𝐶𝑘

to fall below value 𝑑. The lemma is also valid for

𝐶 = , in which case {𝑏} is a one-element

min-d-cut-set candidate.

Proof: Let us put 𝐷 = 𝐶 ∪ {𝑏} and note that, due

to the ordering of components in 𝐶𝑘, 𝑏 is the

component of 𝐷 with the smallest capacity.

Now Lemma 4.1 is a consequence of corollary to

Lemma 3.3.

Remark: Lemma 4.1 provides a simple criterion

for stating whether 𝐶 ∪ {𝑏}, where 𝐶 is a subset

of 𝐶𝑘, is a m-d-c-s candidate in 𝐶𝑘. Let us note that

the lemma’s assumptions are equivalent to the first

two conditions in Theorem 2, where 𝐷 = 𝐶 ∪ {𝑏}.

Lemma 4.2

Let 𝐶 be a subset of 𝐶𝑘 such that 𝛷[𝐴(𝐶𝑘, 𝐶)] ≥ 𝑑. It

then holds that 𝛷[𝐶𝑘\(𝐶 ∪ 𝐶′)] ≥ 𝑑 for each

𝐶′ ⊆ 𝐵(𝐶𝑘 , 𝐶), i.e. no superset of 𝐶 is a m-d-c-s

candidate in 𝐶𝑘.

Proof: If 𝐶′ ⊆ 𝐵(𝐶𝑘, 𝐶) then

 𝐴(𝐶𝑘, 𝐶) ⊆ 𝐶𝑘\(𝐶 ∪ 𝐶′),

because 𝐴(𝐶𝑘, 𝐶) ⊆ 𝐶𝑘 and 𝐴(𝐶𝑘 , 𝐶) has no common

elements with either 𝐶 or 𝐶′. Thus

 𝛷[𝐶𝑘\(𝐶 ∪ 𝐶′)] ≥ 𝛷[𝐴(𝐶𝑘, 𝐶)] ≥ 𝑑,

which ends the proof.

Remark: Lemma 4.2 provides a simple way to check

whether a subset of 𝐶𝑘 is non-augmentable, thus

allowing to reduce the number of subsets generated

from 𝐶𝑘.

Lemma 4.3

Let 𝑏1, 𝑏2… be the consecutive elements of

𝐵(𝐶𝑘, 𝐶). Then 𝛷[𝐶𝑘\(𝐶 ∪ {𝑏𝑖})] is a non-

decreasing sequence with respect to 𝑖 ≥ 1.

Proof: The lemma follows from the fact that 𝜑(𝑏𝑖),

𝑖 ≥ 1, is a non-increasing sequence.

Corollary: if 𝛷[𝐶𝑘\(𝐶 ∪ {𝑏𝑖})] ≥ 𝑑 then

𝛷[𝐶𝑘\(𝐶 ∪ {𝑏𝑗})] ≥ 𝑑 for 𝑗 > 𝑖. This property

allows not to compute the latter capacities. Lemma

4.3 is not referenced in Algorithm 1, and its role

is further explained in the example following

Algorithm 1.

Lemma 4.4

If 𝛷(𝐶𝑘) < 2𝑑 and 𝜑(𝑐∗) ≥ 𝑑 for certain 𝑐∗ ∈ 𝐶𝑘

(i.e. 𝑐∗ is a large capacity component), then {𝑐∗} is

the only m-d-c-s candidate in 𝐶𝑘.

Proof: From the assumptions we have:

 𝛷(𝐶𝑘\{𝑐∗}) ≤ 𝛷(𝐶𝑘) − 𝜑(𝑐∗) < 2𝑑 − 𝑑 = 𝑑. (25)

The second preliminary assumption in Notation

Section yields that

 𝛷(𝐶𝑘\) = 𝛷(𝐶𝑘) ≥ 𝛷(𝐶1) = Ψmax(𝐺) ≥ 𝑑.(26)

Since is the only subset of {𝑐∗}, (25) and (26)

yield that {𝑐∗} is a m-d-c-s candidate in 𝐶𝑘. Let us

suppose that 𝐷 is a m-d-c-s candidate in 𝐶𝑘, and

𝐷 ≠ {𝑐∗}. 𝐷 must include 𝑐∗, because otherwise 𝑐∗

Malinowski Jacek

190

would belong to 𝐶𝑘\𝐷, the inequalities

𝛷(𝐶𝑘\𝐷) ≥ 𝜑(𝑐∗) ≥ 𝑑 would hold, and 𝐷 would

not be a m-d-c-s candidate. In turn, (25) implies that

for 𝐷′ = {𝑐∗} ⊂ 𝐷 we have:

 𝛷(𝐶𝑘\𝐷′) < 𝑑 (27)

thus D does not fulfill the second criterion to be a

m-d-c-s candidate. This ends the proof.

If 𝛷(𝐶𝑘) < 2𝑑 then, based on the Lemmas 4.1-4.4,

and the rules from Section 4, min-d-cut-sets are

obtained from 𝐶𝑘 by the following algorithm:

Algorithm 1

For k = 1 to max[k: (Ck) < 2d] do

 Check if ({c1, k}) d, where c1, k is the first element of Ck. If so, mark {c1, k} as m-d-c-s

 candidate (lemma 4.4), check it for ER*, and pass to the next k;

 D ;

 For j = 0 to |Ck| – 1 do

 If each j-element set generated from Ck is marked, pass to the next k;

 Else

 For each unmarked j-element set C generated from Ck do

 For the successive bB(Ck, C) do

 D C{b} (augment C with {b});

 In the case “(Ck \ D) < d” do

 mark D as m-d-c-s candidate (lemma 4.1), check it for ER*, and pass to next b

 or to next j-element C (if b is the last element of Ck);

 In the case “(Ck \ D) d” do

 If b is the last element of Ck, mark D as non-augmentable (D cannot be augmented,

 because B(Ck, D) =) and pass to next j-element C;

 If [A(Ck, D)] d, mark D as non-augmentable (lemma 4.2) and pass to next

 j-element C;

Remark to the command marked with asterisk:

ER denotes external redundancy. If ER occurs,

i.e. 𝛷(𝐶𝑗\𝐷) < 𝑑 for a certain 𝑗 such that 𝑗 < 𝑘 and

𝛷(𝐶𝑗\𝐶𝑘) < 𝑑, then 𝐷 is externally redundant w.r.t.

𝐶𝑗 𝐷. Otherwise 𝐷 is a min-d-cut-set, non-

externally redundant in 𝐶𝑘 (see Lemma 3.4 and

Theorem 2 with the remark following it).

It should be noted that no internally redundant

d-cut-sets are generated by Algorithm 1, because its

logic and Lemma 4.1 yield that if the obtained set 𝐷

is a d-cut-set, then D is a m-d-c-s candidate.

Although Algorithm 1 can generate non-d-cut-sets

(the case 𝛷(𝐶𝑘\𝐷) ≥ 𝑑), their number is small due

to the condition 𝛷(𝐶𝑘) < 2𝑑.

Let us now trace the flow of Algorithm 1 for the

example network in Figure 1. Let 𝑑 = 10. There are

three min-cut-sets with capacities lower than 2𝑑, i.e.

𝐶1 = {6,5,4}, 𝐶2 = {8,11,4} and 𝐶3 = {1,2} with

𝛷(𝐶1) = 15, 𝛷(𝐶2) = 18, 𝛷(𝐶3) = 19. The results

of the successive operations are presented in the

tables below – one table for each 𝑘. The markings

used in the 4-th and 6-th column have the following

meanings:

 * – 𝐷 is an externally non-redundant min-d-

cut-set (thus 𝐷 is non-augmentable);

 # – 𝐷 is non-augmentable, because

𝛷[𝐴(𝐶𝑘, 𝐷)] exceeds 𝑑 (see Lemma 4.2);

 | – 𝐷 is non-augmentable, because 𝑏 is the

last component in 𝐶𝑘. This marking is only

used if * and # do not apply;

 × – cell with a value that need not be

computed.

Starting from 𝑘 = 2, the values of 𝛷(𝐶𝑗\𝐶𝑘), 𝑗 < 𝑘,

are listed at the top of each table in order to indicate

which 𝐶𝑗 can be omitted when 𝐷 is checked for ER

redundancy, i.e. when Condition 3 in Theorem 2 is

verified. 𝐶𝑗 is omitted in the following three cases:

1. 𝛷(𝐶𝑗\𝐶𝑘) ≥ 𝑑 (Lemma 3.4),

2. 𝐶𝑖
∗ ⊆ 𝐶𝑗

∗ for some 𝑖 < 𝑗 and 𝐶𝑖
∗ is a min-d-

cut-set (Lemma 3.5),

3. the above two conditions do not hold, but all

m-d-c-s candidates obtained from 𝐶𝑗 are

redundant (e.g. 𝑗 = 6 or 𝑗 = 10 as shown

in Section 6).

It is important that the number of 𝑗 fulfilling the last

condition grows rapidly as 𝑘 increases, thus, in

practice, not a large number of ER checks has to be

performed.

Remarks:

1. As follows from Lemma 4.3, if

𝛷(𝐶𝑘\(𝐶 ∪ {𝑏})) ≥ 𝑑 for a certain

𝑏 ∈ 𝐵(𝐶𝑘 , 𝐶), then 𝛷[𝐶𝑘\(𝐶 ∪ {𝑏+})] ≥ 𝑑

for each 𝑏+ that succeeds 𝑏 in 𝐵(𝐶𝑘 , 𝐶), thus

A fast method for enumerating all minimal d-cut-sets in a flow network

191

there is no need to compute 𝛷[𝐶𝑘\(𝐶 ∪
{𝑏+})], because we only need to know if it is

greater or equal to 𝑑.

2. As follows from Algorithm 1, 𝛷[A(𝐶𝑘\𝐷)]
is only computed if 𝛷(𝐶𝑘\𝐷) ≥ 𝑑.

Table 1. Output of Algorithm 1 for 𝑘 = 1

Table 2. Output of Algorithm 1 for 𝑘 = 2:

𝛷(𝐶1\𝐶2) = 11 (ER check not needed)

𝑘 = 3: 𝛷(𝐶1\𝐶3) = 15, 𝛷(𝐶2\𝐶3) = 18 (ER check

not needed).

Output of Algorithm 1 for 𝑘 = 3:

{1}*.

Remark: According to Lemma 4.4, {1}* is the only

m-d-c-s candidate obtained from 𝐶3.

6. Generating min-d-cut-sets in increasing

flow capacities

The case 𝛷(𝐶𝑘) ≥ 2𝑑 is handled by Algorithm 2

which requires that the components of 𝐶𝑘 be ordered

according to increasing flow capacities. Algorithm 2

is based on the following four lemmas.

Lemma 5.1

Let 𝐶 be a subset of 𝐶𝑘 such that

1. (𝐶) < 𝑑,

2. [𝐶 ∪ 𝜇(𝐶𝑘\𝐶)] ≥ 𝑑.

Then (𝐶𝑘\𝐶) is a m-d-c-s candidate in 𝐶𝑘.

Proof: Let us put 𝐷 = 𝐶𝑘\𝐶 and note that, due

to the ordering of components in 𝐶𝑘, 𝜇(𝐶𝑘\𝐶) is

the component of 𝐷 with the smallest capacity.

Now Lemma 5.1 is a consequence of corollary to

Lemma 3.3.

Remark: Lemma 5.1 provides a simple criterion for

stating whether 𝐶𝑘\𝐶, where 𝐶 is a subset of 𝐶𝑘,

is a m-d-c-s candidate in 𝐶𝑘. Let us note that the

lemma’s assumptions are equivalent to the first two

conditions in Theorem 2, where 𝐷 = 𝐶𝑘\𝐶.

Lemma 5.2

If the components of 𝐶𝑘 are ordered according

to increasing capacities, 𝐶 is a 𝑗-element subset

of 𝐶𝑘, 𝐶 is composed of consecutive elements of 𝐶𝑘,

and (𝐶) ≥ 𝑑, then (𝐶′) ≥ 𝑑 for each 𝑗-element 𝐶′
generated subsequently to 𝐶.

Proof: Let 𝐶 = {𝑐1, … , 𝑐𝑗} where 𝑐1, … , 𝑐𝑗 are

consecutive components of 𝐶𝑘, and

𝐶′ = {𝑐′
1, … , 𝑐′𝑗,} be a 𝑗-element set generated sub-

sequently to 𝐷. First, it will be proved by induction

that 𝑐′1 > 𝑐1. This fact is obvious for

𝑗 = 1, in which case 𝑐′1 > 𝑐1, and let us assume that

it holds for a certain 𝑗 ≥ 1. Let 𝐶+ = {𝑐1
+, … , 𝑐𝑗+1

+ }

be a (𝑗 + 1)-element subset of 𝐶𝑘 composed of its

consecutive components. Clearly, 𝐶+ is the first
(𝑗 + 1)-element set obtained by augmenting

{𝑐1
+, … , 𝑐𝑗

+}, and, according to the subset generating

policy, each subsequent (𝑗 + 1)-element set 𝐶+′, is

obtained by augmenting either {𝑐1
+, … , 𝑐𝑗

+} or

{𝑐1
+′, … , 𝑐𝑗

+′} which is one of 𝑗-element sets

generated subsequently to {𝑐1
+, … , 𝑐𝑗

+}. Thus, the first

element of 𝐶+′ is equal either to 𝑐1
+ or to 𝑐1

+′. The

induction assumption yields that 𝑐1
+′ > 𝑐1

+, hence the

first element of 𝐶+′ is greater or equal to 𝑐1
+, which

means that the fact to be proved holds for 𝑗 + 1, and,

in consequence, for any 𝑗 ≥ 1.

Now we can pass to the proper proof. Since the

components of 𝐶 and 𝐶′ are ordered according to

increasing flow capacities, we have:

 𝜑(𝑐1) ≤ ⋯ ≤ 𝜑(𝑐𝑗) (28)

and, in view of the fact proved above,

 𝜑(𝑐1) ≤ 𝜑(𝑐′1) ≤ ⋯ ≤ 𝜑(𝑐′𝑗). (29)

As 𝑐1, … , 𝑐𝑗 are consecutive components of 𝐶𝑘, from

(28) and (29) it follows that 𝜑(𝑐′1) ≥ 𝜑(𝑐1),…,

𝑗 𝐶 b
𝐷
= 𝐶 ∪ {𝑏}

𝛷(𝐶𝑘\𝐷) 𝛷[A(𝐶𝑘\𝐷)]

0 6 {6}* 9

0 5 {5} 10 6

0 4
{4}#

(L. 4.2)
10

(L. 4.3)
11

1 {5} 4 {5,4}* 6

𝑗 𝐶 b
𝐷

= 𝐶 ∪ {𝑏}

𝛷(𝐶𝑘

\𝐷)

𝛷[A(𝐶𝑘

\𝐷)]

0 8 {8} 10 0

0 11 {11}
10

(L. 4.3)
8

0 4
{4}#

(L. 4.2)
10

(L. 4.3)
14

1 {8} 11 {8,11}* 4

1 {8} 4 {8,4}* 6

1 {11} 4 {11,4}* 8

Malinowski Jacek

192

 𝜑(𝑐′𝑗) ≥ 𝜑(𝑐𝑗) hence (𝐶′) ≥ (𝐶)] ≥ 𝑑, q.e.d.

Corollary: If 𝐶 fulfills the assumptions of Lemma

5.2, then the capacities of all 𝑗-element subsets of 𝐶𝑘

generated subsequently to 𝐶 are greater or equal to 𝑑,

hence the complements (w.r.t. 𝐶𝑘) of these subsets

are not m-d-c-s candidates.

Lemma 5.3

If the components of 𝐶𝑘 are ordered according to

increasing capacities, and 𝑏𝑥 is the first element of

𝐵(𝐶𝑘, 𝐶) = {𝑏1, 𝑏2, … } such that [𝐶 ∪ 𝑏𝑥] ≥ 𝑑,

then the capacities of all one-element augmentations

of 𝐶 subsequent to 𝐶 ∪ {𝑏𝑥} are greater or equal to 𝑑,

i.e. [𝐶 ∪ 𝑏𝑦] ≥ 𝑑, where 𝑥 ≤ 𝑦 ≤ 𝑐𝑎𝑟𝑑[𝐵(𝐶𝑘, 𝐶)].

Proof: The lemma’s assumptions yield that

[𝐶 ∪ 𝑏𝑦] ≥ [𝐶 ∪ 𝑏𝑥] ≥ 𝑑, q.e.d.

Corollary: If 𝐶 fulfills the assumptions of Lemma

5.3, then the complements (w.r.t. 𝐶𝑘) of all one-

element augmentations of 𝐶 subsequent to 𝐶 ∪ {𝑏𝑖}

are not m-d-c-s candidates.

Lemma 5.4

Let 𝐵(𝐶𝑘, 𝐶) = {𝑏1, 𝑏2, … }, where 𝑏𝑖, 𝑖 ≥ 1, are or-

dered according to increasing capacities. Then

[𝐶 ∪ 𝑏𝑖 ∪ 𝜇[𝐶𝑘\(𝐶 ∪ 𝑏𝑖)]] is non-decreasing with

respect to 𝑖 ≥ 1.

Proof: We will consider two cases: 𝐴(𝐶𝑘 , 𝐶) =

and 𝐴(𝐶𝑘 , 𝐶) = . In the first case we have:

 𝜇[𝐶𝑘\(𝐶 ∪ 𝑏1)] = 𝑏2, (30)

 𝜇[𝐶𝑘\(𝐶 ∪ 𝑏𝑖)] = 𝑏1, 𝑖 ≥ 2. (31)

It thus follows that

 [𝐶 ∪ 𝑏1 ∪ 𝜇[𝐶𝑘\(𝐶 ∪ 𝑏1)]] (32)

 = (𝐶) + 𝜑(𝑏1) + 𝜑(𝑏2),

 [𝐶 ∪ 𝑏2 ∪ 𝜇[𝐶𝑘\(𝐶 ∪ 𝑏2)]] (33)

 = (𝐶) + 𝜑(𝑏2) + 𝜑(𝑏1),

 [𝐶 ∪ 𝑏𝑖 ∪ 𝜇[𝐶𝑘\(𝐶 ∪ 𝑏𝑖)]]

 = (𝐶) + 𝜑(𝑏𝑖) + 𝜑(𝑏1), 𝑖 ≥ 3. (34)

In the second case, i.e. 𝐴(𝐶𝑘 , 𝐶) = , we have:

 𝜇[𝐶𝑘, 𝐶 ∪ {𝑏𝑖}] = 𝑎1, 𝑖 ≥ 1, (35)

where 𝑎1 is the first element of 𝐴(𝐶𝑘, 𝐶).

In consequence

 [𝐶 ∪ 𝑏𝑖 ∪ 𝜇[𝐶𝑘\(𝐶 ∪ 𝑏𝑖)]]
 = (𝐶) + 𝜑(𝑏𝑖) + 𝜑(𝑎1), 𝑖 ≥ 1. (36)

Since 𝜑(𝑏𝑖) is non-decreasing in 𝑖, 𝑖 ≥ 1, the lem-

ma’s thesis follows from (34) and (36).

Corollary: If 𝑏 is the first element in 𝐵(𝐶𝑘, 𝐶) such

that [𝐶 ∪ 𝑏 ∪ 𝜇[𝐶𝑘\(𝐶 ∪ 𝑏)]] ≥ 𝑑, 𝑏+ succeeds

𝑏 in 𝐵(𝐶𝑘 , 𝐶), and 𝐶+ = 𝐶 ∪ 𝑏+, then

[𝐶+ ∪ 𝜇[𝐶𝑘\𝐶+]] ≥ 𝑑. Thus, the last inequality

need not be checked in order to ascertain, as per

Lemma 5.1, whether 𝐶𝑘\𝐶+ is a m-d-c-s candidate.

Lemma 5.4 is not referenced in Algorithm 2, and its

role is further explained in the example following

Algorithm 2.

If 𝛷(𝐶𝑘) ≥ 2𝑑, then, based on the Lemmas 5.1-5.3,

and the rules from Section 4, min-d-cut-sets are ob-

tained from 𝐶𝑘 by the following algorithm:

Algorithm 2

For k = min [k: (Ck) 2d] to m do

 If Ck fulfills lemma 3.5 pass to the next k;

 D ;

 For j = 0 to |Ck| – 1 do

 If each j-element set generated from Ck is marked, pass to the next k;

 For each unmarked j-element C generated from Ck do *

 For each b B(Ck, C), where {b} is unmarked and (b) < d, do *

 C+ C{b} (augment C with {b});

 In the case “(C+) < d” do

 If [C+ (Ck \ C+)] d, mark C+ as non-augmentable, mark Ck \ C+ as m-d-c-s

 candidate, and check it for ER; **

 In the case “(C+) d” do

 Mark C+ as non-augmentable;

 If C+ is composed of consecutive elements of Ck, pass to the next j; ***

 Pass to the next j-element C; ****

A fast method for enumerating all minimal d-cut-sets in a flow network

193

Remarks to the commands marked with asterisks:

 adding any 𝑏 to a marked set 𝐶, or adding 𝑏

such that 𝜑(𝑏) ≥ 𝑑 to any 𝐶, yields 𝐶+ such

that (𝐶+) ≥ 𝑑, i.e. 𝐶𝑘\𝐶+ is not a m-d-c-s

candidate;

 ** see Lemma 5.1;

 *** the capacities of all (𝑗 + 1)-elements

subsets of 𝐶𝑘 generated subsequently to 𝐶+

would be greater or equal to 𝑑 (see Lemma

5.2);

 **** the capacities of subsequent one-

element augmentations of 𝐶 would be great-

er or equal to 𝑑 (see Lemma 5.3).

It should be noted that Algorithm 2 generates as few

non-d-cut-sets as possible (the case (𝐶+) ≥ 𝑑), and

although it can generate internally redundant

d-cut-sets (it happens if (𝐶+) < 𝑑 and

[𝐶+ ∪ 𝜇[𝐶𝑘\𝐶+]] < 𝑑), their number is small due

to the condition (𝐶𝑘) ≥ 2𝑑. Furthermore, the IR

check is done instantaneously (it is positive if

[𝐶+ ∪ 𝜇[𝐶𝑘\𝐶+]] < 𝑑) and no comparison with

the previously found d-cut-sets is required.

Algorithm 2 will be illustrated by applying it to the

network in Figure 1. The results of the successive

operations are presented in tables, one table for each

𝑘 = 4, … , 𝑚. The algorithm starts with 𝑘 = 4, the

first 𝑘 for which (𝐶𝑘) ≥ 2𝑑. The markings used in

the 4-th and 7-th column have the following

meanings:

 * – 𝐶𝑘\𝐶+ is an externally non-redundant

min-d-cut-set;

 ** – 𝐶𝑘\𝐶+ is an ER m-d-c-s candidate;

 # – C+ fulfills the assumptions of Lemma 5.2

or 5.3;

 | – 𝑏 is the last component of 𝐶𝑘 (this

marking is only used if * and # do not

apply);

 – cell with a value that need not be

computed.

At the top of each table the values of (𝐶𝑗\𝐶𝑘),

𝑗 < 𝑘, are listed in order to indicate which 𝐶𝑗 can be

omitted when 𝐷 is checked for ER redundancy, i.e.

when Condition 3 in Theorem 2 is verified.

Remark: As follows from Lemma 5.4, if

[𝐶+ ∪ 𝜇[𝐶𝑘\𝐶+]] ≥ 𝑑, where 𝐶+ = 𝐶 ∪ {𝑏}, then

[(𝐶 ∪ 𝑏+) ∪ 𝜇[𝐶𝑘(𝐶 ∪ 𝑏+)]] ≥ 𝑑, where 𝑏+

succeeds 𝑏 in 𝐵(𝐶𝑘, 𝐶). Thus, there is no need to

compute [𝐶𝑘\(𝐶 ∪ {𝑏})], because we only need to

know if it is greater or equal to 𝑑.

𝑘 = 6: Each m-d-c-s obtained from 𝐶6 is redundant

(Lemma 3.5).

Output of Algorithm 2 for 𝑘 = 6: none.

Table 3. Output of Algorithm 2 for 𝑘 = 4:

(𝐶1\𝐶4) = 15, (𝐶2\𝐶4) = 12, (𝐶3\𝐶4) = 19,
(ER check not needed)

𝑗 𝐶 𝑏 𝐶+ (𝐶+)
[𝐶+

∪ 𝜇[𝐶𝑘\𝐶+]]
𝐷 = 𝐶𝑘

\𝐶+

0 10 {10}* 5 11 {11,9}*

0 11 {11}* 6 11 (L. 5.4) {10,9}*

0 9 {9}* 9 11 (L. 5.4) {10,11}*

Table 4. Output of Algorithm 2 for 𝑘 = 5:
(𝐶1\𝐶5) = 11, (𝐶2\𝐶5) = 12, (𝐶3\𝐶5) = 19,
(𝐶4\𝐶5) = 9 (check ER for 𝑘 = 4)

𝑗 𝐶 𝑏 𝐶+ (𝐶+)

[𝐶+

∪ 𝜇[𝐶𝑘

\𝐶+]]

𝐷 = 𝐶𝑘

\𝐶+

0 4 {4} 4 9 Not

m-d-c-s

0 7 {7} 5 9 Not

m-d-c-s

0 10 {10} 5 9 Not

m-d-c-s

0 11 {11}* 6 10 {4,7,10}*

1 {4} 7 {4,7}* 9 14 {10,11}**

1 {4} 10 {4,10}* 9 14 (L.

5.4)

{7,11}*

Table 5. Output of Algorithm 2 for 𝑘 = 7:
(𝐶1\𝐶7) = 6, (𝐶2\𝐶7) = 14, (𝐶3\𝐶7) = 10,
(𝐶4\𝐶7) = 20, (𝐶5\𝐶7) = 16 omit 𝐶6 (each m-

d-c-s obtained from 𝐶6 is redundant); check ER for

𝑘 = 1

𝑗 𝐶 𝑏 𝐶+ (𝐶+)
[𝐶+

∪ 𝜇[𝐶𝑘\𝐶+]]
𝐷 = 𝐶𝑘

\𝐶+

0 4 {4} 4 9 Not

m-d-c-s

0 5 {5} 5 9 Not

m-d-c-s

0 3 {3}* 7 11 {4,5,2}**

0 2 {2}* 9 11 (L. 5.4) {4,5,3}**

1 {4} 5 {4,5}* 9 16 {3,2}*

Malinowski Jacek

194

Summing up, the following min-d-cut-sets (𝑑 = 10)

in the network from Figure 1 have been found by

Algorithms 1 and 2: {6}, {5,4}, {8,11}, {8,4}, {11,4},
{1}, {11,9}, {10,9}, {10,11}, {4,7,10}, {7,11}, {3,2},
{5,7,9}, {7,8,9}. They are listed in the same order in

which they have been generated.

Table 6. Output of Algorithm 2 for 𝑘 = 8:
(𝐶1\𝐶8) = 4, (𝐶2\𝐶8) = 18, (𝐶3\𝐶8) = 19,
(𝐶4\𝐶8) = 11, (𝐶5\𝐶8) = 15, (𝐶7\𝐶8) = 20

omit 𝐶6; check ER for 𝑘 = 1

𝑗 𝐶 𝑏 𝐶+ (𝐶+)
[𝐶+

∪ 𝜇[𝐶𝑘\𝐶+]]
𝐷 = 𝐶𝑘

\𝐶+

0 5 {5}* 5 10 {7,6,9}**

0 7 {7}* 5 10 (L.5.4) {5,6,9}**

0 6 {6}* 6 10 (L.5.4) {5,7,9}*

0 9 {9}* 9 10 (L.5.4) {4,5,3}**

Table 7. Output of Algorithm 2 for 𝑘 = 9:
(𝐶1\𝐶9) = 15, (𝐶2\𝐶9) = 4, (𝐶3\𝐶9) = 19,
(𝐶4\𝐶9) = 5, (𝐶5\𝐶9) = 9, (𝐶7\𝐶9) = 25,
(𝐶8\𝐶9) = 11 omit 𝐶6; check ER for 𝑘 = 2,4,5

𝑗 𝐶 𝑏 𝐶+ (𝐶+)
[𝐶+

∪ 𝜇[𝐶𝑘\𝐶+]]
𝐷 = 𝐶𝑘

\𝐶+

0 7 {7}* 5 11 {11,8,9}**

0 11 {11}* 6 11 (L.5.4) {7,8,9}*

0 8 {8}* 8 11 (L.5.4) {7,11,9}**

0 9 {9}* 9 11 (L.5.4) {7,11,8}**

Table 8. Output of Algorithm 2 for 𝑘 = 10:
(𝐶1\𝐶10) = 4, (𝐶2\𝐶10) = 10,
(𝐶3\𝐶10) = 19,(𝐶4\𝐶10) = 6,
(𝐶5\𝐶10) = 9, (𝐶7\𝐶10) = 20,
(𝐶8\𝐶10) = 5,(𝐶9\𝐶10) = 11 omit 𝐶6; check ER

for 𝑘 = 1,4,5,8

𝑗 𝐶 𝑏 𝐶+ (𝐶+)

[𝐶+

∪ 𝜇[𝐶𝑘

\𝐶+]]
𝐷 = 𝐶𝑘\𝐶+

0 5 {5}* 5 10 {10,6,8,9}**

0 10 {10}* 5 10 (L.5.4) {5,6,8,9}**

0 6 {6}* 6 10 (L.5.4) {5,10,8,9}**

0 8 {8}* 8 10 (L.5.4) {5,10,6,9}**

0 9 {9}* 9 10 (L.5.4) {5,10,6,8}**

Table 9. Output of Algorithm 2 for 𝑘 = 11:

(𝐶1\𝐶11) = 10, (𝐶2\𝐶11) = 18,
(𝐶3\𝐶11) = 10, (𝐶4\𝐶11) = 16,
(𝐶5\𝐶11) = 15, (𝐶7\𝐶11) = 4,
(𝐶8\𝐶11) = 6, (𝐶9\𝐶11) = 14, omit 𝐶6 and 𝐶10

(each m-d-c-s obtained therefrom is redundant)

check ER for 𝑘 = 7,8.

𝑗 𝐶 𝑏 𝐶+ (𝐶+)
[𝐶+

∪ 𝜇[𝐶𝑘\𝐶+]]
𝐷 = 𝐶𝑘

\𝐶+

0 5 {5}* 5 10 {7,3,2,9}**

0 7 {7}* 5 10 (L.5.4) {5,3,2,9}**

0 3 {3}* 7 10 (L.5.4) {5,7,2,9}**

0 2 {2}* 9 10 (L.5.4) {5,7,3,9}**

0 9 {9}* 9 10 (L.5.4) {5,7,3,2}**

𝑘 = 12, 13: each m-d-c-s obtained from 𝐶12 or 𝐶13 is

redundant (Lemma 3.5).
Output of Algorithm 2 for 𝑘 = 12, 13: none.

Table 10. Output of Algorithm 2 for 𝑘 = 14:

(𝐶1\𝐶14) = 10, (𝐶2\𝐶14) = 10,
(𝐶3\𝐶14) = 10, (𝐶4\𝐶14) = 6,
(𝐶5\𝐶14) = 15, (𝐶7\𝐶14) = 4,
(𝐶8\𝐶14) = 11, (𝐶9\𝐶14) = 11, omit 𝐶6, 𝐶10,

𝐶12, 𝐶13 (each m-d-c-s obtained therefrom is

redundant) check ER for 𝑘 = 4, 7.

𝑗 𝐶 𝑏 𝐶+ (𝐶+)

[𝐶+

∪ 𝜇[𝐶𝑘

\𝐶+]]
𝐷 = 𝐶𝑘\𝐶+

0 5 {5}* 5 10 {10,3,8,2,9}**

0 10 {10}* 5
10

(L.5.4)
{5,3,8,2,9}**

0 3 {3}* 7
10

(L.5.4)
{5,10,8,2,9}**

0 8 {8}* 8
10

(L.5.4)
{5,10,3,2,9}**

0 2 {2}* 9
10

(L.5.4)
{5,10,3,8,9}**

0 9 {9}* 9
10

(L.5.4)
{5,10,3,8,2}**

7. Numerical complexity issue

In this section a formula for the presented method’s

numerical complexity will be derived.

A fast method for enumerating all minimal d-cut-sets in a flow network

195

Let us introduce the following additional notation:

 𝐽∗(𝐶) - the smallest 𝑗 such that:

 𝜑(𝑐1)+. . . +𝜑(𝑐𝑗) > Ψ𝑚𝑎𝑥(𝐺) - 𝑑,

where 𝑐1, 𝑐2, . .. are the components of 𝐶 orde

red according to non-decreasing capacities, i.

e.

 𝜑(𝑐1) ≤ 𝜑(𝑐2) ≤. ..;

 𝑗∗(𝐶) - the smallest 𝑗 such that

 𝜑(𝑐1)+. . . +𝜑(𝑐𝑗) > Ψ𝑚𝑎𝑥(𝐺) - 𝑑,

where 𝑐1, 𝑐2, . .. are the components of 𝐶

ordered according to non-decreasing

capacities, i.e.

 𝜑(𝑐1) ≥ 𝜑(𝑐2) ≥ ⋯ .

Lemma 6.1

The computational complexity of the presented

method, expressed in the “big O” notation, is

approximately equal to

 𝑂 [∑ max
𝑗∗(𝐶𝑘)≤𝑗≤𝐽∗(𝐶𝑘)

(𝑐𝑎𝑟𝑑(𝐶𝑘)
𝑗

)𝑚
𝑘=1]. (37)

Proof: Let us note that a min-d-cut-set generated

from 𝐶𝑘 has 𝐽∗(𝐶𝑘) or 𝑗∗(𝐶𝑘) components if it

consists of the components with the smallest or

largest capacities respectively. It holds that 𝐽∗(𝐶𝑘) ≥
𝑗∗(𝐶𝑘). In consequence, any min-d-cut set generated

from 𝐶𝑘 has between 𝑗∗(𝐶𝑘) and 𝐽∗(𝐶𝑘) components.

Thus the number of min-d-cut-sets generated from

𝐶𝑘 does not exceed the maximum number of

𝑗-element subsets of a set whose number of elements

equals 𝑐𝑎𝑟𝑑(𝐶𝑘), the maximum being taken over

𝑗∗(𝐶𝑘) ≤ 𝑗 ≤ 𝐽∗(𝐶𝑘). In view of the fact that only a

very small number of non-minimal d-cut-sets is gen-

erated from each 𝐶𝑘, 𝑘 = 1, . . . , 𝑚 (due to different

treatment of the cases 𝛷(𝐶𝑘) < 2𝑑 and 𝛷(𝐶𝑘) ≥
2𝑑), we can approximate the method’s complexity

by the total number of generated min-d-cut-sets,

which, as follows from the first part of the proof,

does not exceed (37).

8. Result comparison with other methods

The main difference between the two methods

consists in dissimilar ways in which they address

the external redundancy problem. The authors of [2]

claim that they avoid generating externally redundant

d-cut-sets by using a special decomposition

technique that modifies 𝐿𝑡 (the list of sets from

which min-d-cut-sets are generated) when the

generation algorithm passes to the next set on 𝐿𝑡. A

short description of their method is given below.

In the beginning 𝐿𝑡 is composed of all min-cut-sets,

and to each 𝐶 ∈ 𝐿𝑡 a value 𝑤(𝐶) is assigned; 𝑤(𝐶) is

called the required capacity of 𝐶 and is initially equal

to 𝑑. The following operations are repeated in a loop:

Each subset 𝐷 of 𝐶1 (the first set on 𝐿𝑡), such that

(𝐶1\𝐷) < 𝑤(𝐶1), is added to 𝐿𝑑 (the list of min-d-

cut-sets), then 𝐶1 is deleted from 𝐿𝑡. If 𝐿𝑡 is now

empty, the algorithm stops, otherwise each recently

generated 𝐷 is checked for inclusion in each 𝐶 on 𝐿𝑡.

If 𝐷 = {𝑑1, . . . , 𝑑|𝐷|} ⊆ 𝐶 then 𝐶 is decomposed

into |𝐷| sets 𝐶\{𝑑1},…, 𝐶\{𝑑|𝐷|} whose required

capacities are computed as follows:

 𝑤(𝐶\{𝑑𝑖}) = 𝑤(𝐶) − 𝜑(𝑑𝑖), 𝑖 = 1, . . . , 𝑐𝑎𝑟𝑑(𝐷).

Then 𝐶 is substituted on 𝐿𝑡 by those sets 𝐶\{𝑑1} for

which 𝑤(𝐶\{𝑑𝑖}) > 0.

For greater clarity, let us write down the above

procedure in a pseudocode as the following

algorithm:

Algorithm 3

1. Put Ld = and populate Lt with min--cut-sets

ordered by increasing number of components

2. Put on Ld,aux each minimal subset D of C1, such

that (C1\D) < w(C1)

3. Augment Ld with Ld,aux and delete C1 from Lt

4. If Lt is empty, stop

5. For each set D on Ld,aux do

 For each set C on Lt do

 If D C then substitute C with those C\{di}

 for which w(C) – (di) > 0, i = 1,2,…, card(D)

6. Skip to 2

Remarks: 𝐿𝑑,𝑎𝑢𝑥 is the list of min-d-cut-sets generat-

ed from one set on 𝐿𝑡, and 𝐿𝑑 is the list of min-d-cut-

sets generated up to the current step. When the

algorithm stops, 𝐿𝑑 contains all min-d-cut-sets. A

subset 𝐷 fulfilling the condition in step 2 is minimal

if (𝐶1\𝐷′) < 𝑤(𝐶1) for each 𝐷′ ⊂ 𝐷. (𝐶\𝐷)

must be less than 𝑤(𝐶), so that 𝐷 can be a d-cut set

generated from 𝐶.

To facilitate the comparison of Algorithm 3 with

Algorithm 1 and 2, the detailed trace of Algorithm 3

for the network in Figure 1 is now presented. For

each 𝐶 on 𝐿𝑡, such that 𝑤(𝐶) < 𝑑 = 10, the value

𝑤(𝐶) is given next to 𝐶 as a superscript. If

𝑤(𝐶) = 10 then 𝐶 is not superscripted

 𝐿𝑑 =,

 𝐿𝑡 ={1,2}, {4,5,6}, {4,8,11}, {9,10,11}, {1,3,6},

Malinowski Jacek

196

 {4,7,10,11}, {2,3,4,5}, {5,6,7,9}, {7,8,9,11},
 {5,6,8,9,10}, {2,3,5,7,9}, {1,3,5,8,11},
 {1,3,5,7,10,11}, {2,3,5,8,9,10}.

Generate min-d-cut-sets from {1,2}:

 𝐿𝑑,𝑎𝑢𝑥 = {1}, 𝐿𝑑 = 𝐿𝑑 ∪ 𝐿𝑑,𝑎𝑢𝑥, 𝐿𝑡 = 𝐿𝑡\{1,2};

Execute step 5 (13 checks and 3 decompositions);

 𝐿𝑡 = {4,5,6}, {4,8,11}, {9,10,11}, {3,6}(0),
 {4,7,10,11}, {2,3,4,5}, {5,6,7,9}, {7,8,9,11},
 {5,6,8,9,10}, {2,3,5,7,9}, {3,5,8,11}(0),
 {3,5,7,10,11}(0),

 {2,3,5,8,9,10} = {4,5,6}, {4,8,11}, {9,10,11},
 {4,7,10,11}, {2,3,4,5}, {5,6,7,9}, {7,8,9,11},
 {5,6,8,9,10}, {2,3,5,7,9}, {2,3,5,8,9,10}.

Generate min-d-cut-sets from {4,5,6}:

 𝐿𝑑,𝑎𝑢𝑥 = {6}, {4,5}, 𝐿𝑑 = 𝐿𝑑 ∪ 𝐿𝑑,𝑎𝑢𝑥,

 𝐿𝑡 = 𝐿𝑡\{4,5,6};

Execute step 5 (18 checks and 4 decompositions);

 𝐿𝑡 ={4,8,11}, {9,10,11}, {4,7,10,11}, {2,3,5}(6),
 {2,3,4}(5), {5,7,9}(4), {7,8,9,11}, {5,8,9,10}(4),
 {2,3,5,7,9}, {2,3,5,8,9,10}.

Generate min-d-cut-sets from {4,8,11}:

 𝐿𝑑,𝑎𝑢𝑥 ={4,8}, {4,11}, {8,11}, 𝐿𝑑 = 𝐿𝑑 ∪ 𝐿𝑑,𝑎𝑢𝑥,

 𝐿𝑡 = 𝐿𝑡\{4,8,11};

Execute step 5 (27 checks and 4 decompositions);

 𝐿𝑡 ={9,10,11}, {7,10,11}(6), {4,7,10}(4), {2,3,5}(6),
 {2,3,4}(5), {5,7,9}(4), {7,9,11}(2), {7,8,9}(4),
 {5,8,9,10}(4), {2,3,5,7,9}, {2,3,5,8,9,10}.

Generate min-d-cut-sets from {9,10,11}:

 𝐿𝑑,𝑎𝑢𝑥 ={9,10}, {9,11}, {10,11},

 𝐿𝑑 = 𝐿𝑑 ∪ 𝐿𝑑,𝑎𝑢𝑥, 𝐿𝑡 = 𝐿𝑡\{9,10,11};

Execute step 5 (30 checks and 8 decompositions);

 𝐿𝑡 ={7,11}(1), {7,10}(0), {4,7,10}(4), {2,3,5}(6),
 {2,3,4}(5), {5,7,9}(4), {7,11}(–7), {7,9}(–4), {7,8,9}(4),
 {5,8,10}(–5), {5,8,9}(–1), {2,3,5,7,9}, {2,3,5,8,10}(1),

 {2,3,5,8,9}(5) = {7,11}(1), {4,7,10}(4), {2,3,5}(6),
 {2,3,4}(5), {5,7,9}(4), {7,8,9}(4), {2,3,5,7,9},
 {2,3,5,8,10}(1), {2,3,5,8,9}(5).

Generate min-d-cut-sets from {7,11}(1) :

 𝐿𝑑,𝑎𝑢𝑥 ={7,11}, 𝐿𝑑 = 𝐿𝑑 ∪ 𝐿𝑑,𝑎𝑢𝑥,

 𝐿𝑡 = 𝐿𝑡\{7,11}(1);

Execute step 5 (8 checks and 0 decompositions);

 𝐿𝑡 ={4,7,10}(4), {2,3,5}(6), {2,3,4}(5), {5,7,9}(4),
 {7,8,9}(4), {2,3,5,7,9}, {2,3,5,8,10}(1), {2,3,5,8,9}(5).

Generate min-d-cut-sets from {4,7,10}(4) :

 𝐿𝑑,𝑎𝑢𝑥 ={4,7,10}, 𝐿𝑑 = 𝐿𝑑 ∪ 𝐿𝑑,𝑎𝑢𝑥,

 𝐿𝑡 = 𝐿𝑡\{4,7,10}(4);

Execute step 5 (7 checks and 0 decompositions);

 𝐿𝑡 ={2,3,5}(6), {2,3,4}(5), {5,7,9}(4), {7,8,9}(4),
 {2,3,5,7,9}, {2,3,5,8,10}(1), {2,3,5,8,9}(5).

Generate min-d-cut-sets from {2,3,5}(6) :

 𝐿𝑑,𝑎𝑢𝑥 ={2,3}, 𝐿𝑑 = 𝐿𝑑 ∪ 𝐿𝑑,𝑎𝑢𝑥,

 𝐿𝑡 = 𝐿𝑡\{2,3,5}(6);

Execute step 5 (6 checks and 8 decompositions);

 𝐿𝑡 ={3,4}(–4), {2,4}(–2), {5,7,9}(4), {7,8,9}(4),
 {3,5,7,9}(1), {2,5,7,9}(3), {3,5,8,10}(–8),
 {2,5,8,10}(–6), {3,5,8,9}(–4),

 {2,5,8,9}(–1) = {5,7,9}(4), {7,8,9}(4), {3,5,7,9}(1),
 {2,5,7,9}(3).

Generate min-d-cut-sets from {5,7,9}(4) :

 𝐿𝑑,𝑎𝑢𝑥 ={5,7,9}, 𝐿𝑑 = 𝐿𝑑 ∪ 𝐿𝑑,𝑎𝑢𝑥,

 𝐿𝑡 = 𝐿𝑡\{5,7,9}(4);

Execute step 5 (3 checks and 6 decompositions)

 𝐿𝑡 ={7,8,9}(4), {3,7,9}(–4), {3,5,9}(–4), {3,5,7}(–8),
 {2,7,9}(–2), {2,5,9}(–2), {2,5,7}(–6) = {7,8,9}(4).

Generate min-d-cut-sets from {7,8,9}(4) :

 𝐿𝑑,𝑎𝑢𝑥 ={7,8,9}, 𝐿𝑑 = 𝐿𝑑 ∪ 𝐿𝑑,𝑎𝑢𝑥,

A fast method for enumerating all minimal d-cut-sets in a flow network

197

 𝐿𝑡 = 𝐿𝑡\{7,8,9}(4) = (𝐿𝑡 is empty);

 𝐿𝑑 ={1}, {6}, {4,5}, {4,8}, {4,11}, {8,11},
 {9,10}, {9,11}, {10,11}, {7,11}, {4,7,10},
 {2,3}, {5,7,9}, {7,8,9}.

The comparison of Algorithm 3 with Algorithm 1 or

2 leads to the following conclusions.

1) The number of cycles of the main loop in the

combined Algorithm 1 and 2 does not exceed m (the

number of min-cut-sets), but is unpredictable in

Algorithm 3 due to variable length of 𝐿𝑡, and may be

greater than m.

An ER check in Algorithm 1 or 2 is numerically

equivalent to an inclusion check or decomposition

operation in Algorithm 3, but the number of ER

checks in Algorithm 1 and 2 can be significantly

smaller than the number of inclusion checks and

decompositions in Algorithm 3. Each m-d-c-s

candidate found by Algorithm 1 or 2 is only

compared to selected min--cut-sets preceding the

one from which this candidate is generated (see

corollary to Lemma 3.4). If applied to the network in

Figure 1, Algorithm 1 makes no ER checks, and

Algorithm 2 makes 64 ER checks (3 in step 5,

3 in step 7, 4 in step 8, 12 in step 9, 20 in step 10,

10 in step 11, and 12 in step 14). In turn, in

Algorithm 3 each D on 𝐿𝑑,𝑎𝑢𝑥 is checked for

inclusion in each set on the current 𝐿𝑡, which

amounts to 112 checks and 33 decompositions if

Algorithm 3 is applied to the same network. This

difference between Algorithm 3 and Algorithm 1

and 2 is likely to grow with the network size.

2) The computational effort afforded in Algorithm 1

or 2 to obtain m-d-c-s candidates from one min-cut-

set is comparable to that required to extract 𝐿𝑑,𝑎𝑢𝑥

from one set on 𝐿𝑡. (𝐿𝑑,𝑎𝑢𝑥 is obtained using the

decomposition technique to prevent generating

internally redundant d-cut-sets). In turn, the

technique of generating m-d-c-s candidates, based

on Lemmas 4.1–4.4 and 5.1–5.4, and on capacity-

based ordering of min-cut-sets and their

elements, minimizes the number of non-d-cut-sets

(Algorithm 1) or internally redundant d-cut-sets (Al-

gorithm 2) generated prior to finding a candidate. It

also avoids generating internally redundant d-cut-sets

in Algorithm 1 or allows for instantaneous internal

redundancy check in Algorithm 2. In [2] the min-cut-

sets are initially ordered by increasing number of

components, and their elements are ordered by

increasing indexes, thus the advantages of capacity-

based ordering are overlooked.

3) Last but not least, Algorithms 1 and 2, based on

Theorem 2, guarantee that no ER redundant d-cut-

sets are generated. It should be noted that the authors

of [2] in the 2-nd paragraph of Section II and the last

paragraph of Section V admit that their method can

generate a certain number of ER d-cut-sets (although

no such sets were generated by Algorithm 3 for the

given example).

Algorithms 1 and 2 are only compared with

Algorithm 3 for two reasons. One – very few meth-

ods for min-d-cut-sets enumeration can be found in

the literature. Second – the authors of [2] claimed to

improve the results of [5] and proved their method to

be very efficient. Also, it is difficult to compare the

results presented here with those of [9], because

networks with multi-state links (not two-state ones)

are considered there.

9. Conclusion

As shown in Section 7, the new method of

enumerating all min-d-cut-sets in a flow network

presented in this chapter is competitive in

comparison with the analogous methods described in

the relevant literature, particularly in [2] that

improves the results of [5].

Let us note that, using Algorithm 1 or 2, it is possible

to generate m-d-c-s candidates and check them

for non-redundancy, in parallel for several successive

k. This is because, due to Condition 3 in Theorem 2,

non-redundancy check involves the given min-cut-

sets 𝐶𝑗, 𝑗 < 𝑘, rather than min-d-cut-sets obtained

from 𝐶𝑗, 𝑗 < 𝑘. Thus, the computing time can

be significantly reduced compared to generating

min-d-cut-sets sequentially for 𝑘 = 1, … , 𝑚.

Although the provided example suggests that

the proposed method can only be used for networks

with undirected links and failure-free nodes, this

is not the case. Since the Ford-Fulkerson theorem

also holds for networks with directed links and

failing nodes with limited capacities, so do all the

lemmas and theorems from Sections 3–5. See [7] and

[10] for algorithms that find min-cut-sets in such

networks. Moreover, the method can be generalized

to the multi-source and/or multi-sink case, but this

would require appropriate redefining of min--cut-

sets, which will be a topic of further research.

It should be noted that a similar issue has been

addressed in [3].

Another topic for future research is the adaptation

of Algorithms 1 and 2 to networks with multi-state

components. This is not a simple task, because

in the multi-state case a d-cut-set is not defined

as a subset of components, but as a vector of

reduced capacities of all components in a

network. For example, (10,9,7,4,5,6,5,8,9,5,6) and

(10,9,7,3,3,3,5,8,9,5,6) are vectors of maximum

and reduced capacities for the network in Figure 1

(capacities of components 4, 5 and 6 are reduced

to 3). The Ford-Fulkerson theorem allows to easily

Malinowski Jacek

198

check that the second vector reduces Ψ𝑚𝑎𝑥(𝐺) from

15 to 9, i.e. it is a d-cut-set if 𝑑 ≥ 10. Although

it seems possible to formulate and prove lemmas

and theorems analogous to those from Section 3,

the lemmas from Sections 4 and 5 may not have

direct counterparts. In any case, the numerical

complexity of the method adapted to multi-state

components will be significantly higher than that

given by (37).

References

[1] Abel, U. & Bicker, R. 1982. Determination of all

minimal cut-sets between a vertex pair in an

undirected graph, IEEE Transactions on

Reliability (31), 167–171.

[2] Chakraborty, S. & Goyal, N. K. 2015. Irredundant

subset cut enumeration for reliability evaluation

of flow networks. IEEE Transactions on

Reliability 64(4), 1194–1202.

[3] Chakraborty, S. & Goyal, N. K. 2017. An

efficient reliability evaluation approach for

networks with simultaneous Multiple-Node-Pair

flow requirements. Quality and Reliability

Engineering International 33(5), 1067–1082.

[4] Chatelet, E. et al. 1999. An optimal procedure to

generate sums of disjoint products. Reliability

Engineering and System Safety 65(3), 289–294.

[5] Chaturvedi, S. K. 2007. Irredundant subset

cut generation to compute capacity related

reliability. International Journal of

Performability Engineering 3(2), 243–256.

[6] Cormen, T. H. et al. 2009. Introduction to

Algorithms. MIT Press, London.

[7] Malinowski, J. 2015. A new efficient algorithm

generating all minimal s–t cut sets in a graph-

modeled network. Proceedings of the

International Conference of Numerical Analysis

and Applied Mathematics, AIP Conference

Proceedings, 480030-1–480030-4.

[8] Malinowski, J. 2016. A fast tree-scanning

algorithm finding a compact expression for the

structure function of a system with known mini-

mal path(cut) sets. Proceedings of the 26th

European Safety and Reliability Conference,

ESREL 2016, In: Risk, Reliability and Safety:

Innovating Theory and Practice 1375–1379.

[9] Niu, Y. F. et al. 2017. A new efficient algorithm

for finding all d–minimal cuts in multi-state

networks. Reliability Engineering and System

Safety 166, 151–163.

[10] Singh, B. 1994. Enumeration of node cut sets for

an s–t network. Microelectronics Reliability 34,

559–561.

[11] Soh, S. & Rai, S. 2005. An efficient cutset

approach for evaluating communication-network

reliability with heterogeneous link-capacities.

IEEE Transactions on Reliability 54(1), 133–144.

[12] Yeh, W. C. 2006. A simple algorithm to search

for all MCs in networks. European Journal

of Operational Research 174, 1694–1705.

[13] Yeh, W. C. 2007. An improved sum-of-disjoint-

products technique for the symbolic network

reliability analysis with known minimal paths.

Reliability Engineering and System Safety 92(2),

260–268.

	SSARS Contribution Template
	SSARS Contribution Template

