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Abstract 
 

A d-cut-set in a flow network is a set of components whose removal or blockage causes the maximum flow 

(MF) to fall below value d, provided that in fully operational network MF is greater or equal to d. A min-d-cut-

set is a d-cut set such that it does not contain any other d-cut-set. In turn, a cut-set is a set of components whose 

removal disconnects the source and the sink, which results in MF being equal to 0. A min-cut-set contains  

no other cut-set. The method works as follows: the min-cut-sets are ordered according to increasing flow  

capacities, then from every min-cut-set a number of d-cut-sets are generated and each of them is checked  

for being minimal and unique. The method features two different algorithms respectively applied if 𝛷(𝐶) < 2𝑑 

or 𝛷(𝐶) ≥ 2𝑑. 𝐶 is the min-cut-set from which d-cut-sets are generated, and 𝛷(𝐶) is the flow capacity of 𝐶. 

This distinction results in quick generation of min-d-cut-sets without finding many non-d-cut-sets or non-

minimal d-cut-sets. Compared to the similar methods, the new one is highly efficient, due to several original 

solutions, e.g. an efficient method of checking the redundancy of candidates for min-d-cut-sets. Min-d-cut-sets 

have two main applications. First, they can be used to compute various reliability characteristics of flow  

networks. Second, the knowledge of these sets facilitates or even enables management and maintenance  

of various flow networks such as data transmission, water, power supply, or traffic networks, field drainage 

systems, etc. 

 
1. Introduction 
 

In this chapter two efficient algorithms are proposed 

for the purpose of enumerating all minimal d-cut-sets 

in a flow network with one source and one sink node. 

Although this topic has been studied by several  

authors (see [2], [5], [9] and [12], where the last  

paper contains a comprehensive literature survey), 

the technique presented herein differs significantly 

from those applied in the above papers and  

features several original solutions aimed at high 

computational efficiency. 

Let D be a set of components (links and/or nodes) in 

a flow network with one source and one sink node. D 

is called a d-cut-set if the failure of all components in 

D causes the maximum flow in the network to fall 

below D value d (d may be regarded as the required 

network capacity). Clearly, this definition makes 

sense if the maximum flow in the fully operational 

network (all its components are in operation) is 

greater than or equal to d. Further, D will be called a 

minimal-d-cut-set (abbreviated to min-d-cut-set or 

m-d-c-s) if no subset of D is a d-cut-set. It should be 

noted that min-d-cut-sets can be named differently 

throughout the literature, e.g. the term “subset cuts” 

is used in [2] and [5], but the former term seems 

more self-explanatory. 

For the theoretical considerations conducted in the 

next section we will need the well-known Ford-

Fulkerson theorem stating that the maximum flow 

from the source to the sink node is equal to the 

smallest capacity of a minimal cut-set (see [6]).  

A cut-set is a set of components whose failure results 

in topological disconnection between the source and 

the sink node; note that cut-sets should be  

distinguished from d-cut-sets. A minimal cut-set  

(shortened to min-cut-set) contains no other cut-set. 

The capacity of a cut-set or d-cut-set is the sum  

of capacities of all its components. 

As stated in the abstract, the presented method 

consists of two algorithms, both of which use  

min-cut-sets as the initial data, as the algorithms of 

other cited authors do. From each min-cut-set a 

number of d-cut-sets are generated; each one is 

checked for being minimal and unique. This leads to 
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finding all min-d-cut-sets. The method uses one of 

two algorithms, depending on whether 𝛷(𝐶) < 2𝑑  

or Φ(C) ≥ 2d, where C denotes a min-cut-set from 

which min-d-cut sets are generated, and Φ(C) 

denotes the capacity of C. The different handling of 

the cases Φ(C) < 2d and Φ(C) ≥ 2d, not encountered 

in other relevant papers, significantly accelerates the 

enumeration procedure. Most importantly, it greatly 

reduces the number of non-d-cut-sets that are 

generated, and ensures that the produced d-cut-sets 

include only a small number of non-minimal ones. 

Other advantages of this approach are given in 

Sections 4 and 5. 

As indicated above, the method requires all min-cut-

sets to be found in advance. The problem of finding 

them is a long studied one and there exist multiple 

algorithms for that purpose, presented e.g. in [1], [7], 

and [11]. 

The list of all (or some) min-d-cut-sets can be used 

for a number of practical purposes. First of all, it can 

be used for computing the network reliability which 

in this context is defined as the probability that the 

maximum flow is greater or equal to 𝑑. However, 

other uses are also possible, e.g. for drainage  

or traffic system control. 

The paper is organized as follows. In Section 2 the 

used notation and preliminary assumptions concern-

ing the studied network model are presented. Section 

3 contains the necessary theoretical background for 

the algorithms developed in Sections 5 and 6. In 

Section 4 a general description of the newly  

developed method is given, along with a comparison 

to recent results published in [2] and [5]. In  

Sections 5 and 6 the algorithms for the cases  

𝛷(𝐶) < 2𝑑  and  𝛷(𝐶) ≥ 2𝑑 respectively are  

presented. They are illustrated by their application to 

an example network, and each step is analyzed  

in detail. Each of the Sections 3, 5 and 6 begins with 

several lemmas which collectively constitute the 

method’s mathematical background. Some of the 

lemmas from Section 3 can most likely be found in 

earlier works, but their proofs are provided for the 

sake of self-containment. In turn, the lemmas from 

Sections 5 and 6 are the author’s original results.  

In Section 7 the numerical complexity of the new 

method is estimated. Section 8 contains its detailed 

comparison with the method presented in [2]. In 

Section 9 a number of conclusive remarks are given 

with some hints regarding possible extensions of the 

method to networks modeled by (partly) directed 

graphs, networks with multiple sources and/or sinks, 

or networks with multi-state components. 

 

2. Notation and preliminary assumptions  
 

 𝐺 = (𝑉, 𝐸): a network defined as a graph 𝐺 

with 𝑉 and 𝐸 as the sets of nodes and links; 

 𝑐𝑎𝑟𝑑(𝑆): the number of elements in a set 𝑆; 

 𝑛: the number of components in 𝐺,  

𝑛 = 𝑐𝑎𝑟𝑑(𝐸) + 𝑐𝑎𝑟𝑑(𝑉); 

 𝑥𝑖: the state of the 𝑖-th component; 𝑥𝑖 = 1  

or 𝑥𝑖  =  0 if the 𝑖-th component is operable  

or failed; 

 𝑠, 𝑡: the source and the sink nodes; 

 𝑠 − 𝑡 path: a path from 𝑠 to 𝑡 consisting  

of components of 𝐺; 

 Γ𝑠,𝑡
𝐺 (𝑥): the 𝑠 − 𝑡 connectivity function of 𝐺, 

i.e. Γ𝑠,𝑡
𝐺 (𝑥) = 1 if there is an 𝑠 − 𝑡 path  

composed of operable components,  

otherwise Γ𝑠,𝑡
𝐺 (𝑥) = 0; 

 cut-set: a set of components whose removal 

or failure disconnects 𝑠 and 𝑡; 

 min-cut-set: a cut-set such that no its subset  

is a cut-set; 

 𝑚: the number of all min-cut-sets of 𝐺; 

 𝐶1, … , 𝐶𝑚: all min-cut-sets of 𝐺; 

 𝜑(𝑐): the flow capacity of a component 𝑐, 

𝑐 ∈ 𝐸 ∪ 𝑉; 

 large capacity component: a component 𝑐,  

such that 𝜑(𝑐) ≥ 𝑑; 

 𝛷(𝐶): the total flow capacity of all  

components in a set 𝐶, 𝐶 ⊆ E ∪ V, i.e. 

𝛷(𝐶) = ∑ 𝜑(𝑐)𝑐∈𝐶 ; 

 Ψ𝑚𝑎𝑥(𝐺): the maximal flow from 𝑠 to 𝑡  

through 𝐺; 

 𝐶, 𝐶′, 𝐷, 𝐷′, 𝐷1, 𝐷2: sets of network  

components; 

 ⊂, ⊆: the “included in and not equal to” and 

“included in or equal to” relations between  

sets; 

 𝐺\𝐷: the subgraph of 𝐺 obtained by  

removing all the components of 𝐷; 

 d-cut-set: a set 𝐷 such that Ψ𝑚𝑎𝑥(𝐺\𝐷) < 𝑑,  

i.e. 𝐷 is a set of components whose removal 

or failure causes the maximal flow through 𝐺 

to fall below 𝑑; 

 min-d-cut-set: a short form of “minimal  

d-cut-set”; 𝐷 is a min-d-cut-set if no subset  

of 𝐷 is a d-cut-set, i.e. Ψ𝑚𝑎𝑥(𝐺\𝐷′) < 𝑑 for 

each 𝐷′ ⊂ 𝐷; 

 m-d-c-s candidate in 𝐶𝑘: a short form of  

“minimal d-cut-set candidate in 𝐶𝑘”; D  

is a m-d-c-s candidate in 𝐶𝑘 if 𝐷 ⊆ 𝐶𝑘,  

𝛷(𝐶𝑘\𝐷) < 𝑑 and 𝛷(𝐶𝑘\𝐷′) ≥ 𝑑 for each 

𝐷′ ⊂ 𝐷; 

 redundant set: a set is redundant in a family 

of sets if it contains or is equal to another set 

in this family; 

 IR: internal redundancy; a d-cut-set 𝐷 is inte

rnally redundant in 𝐶𝑘 if 𝐷 ⊆ 𝐶𝑘 and there  
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exists a d-cut-set 𝐷′ such that 𝐷′ ⊂ 𝐷; 

 ER: external redundancy; a d-cut-set 𝐷 is  

externally redundant in 𝐶𝑘, 𝑘 ≥ 2, if 𝐷 ⊆ 𝐶𝑘 

and there exists a d-cut-set 𝐷′ such that  

𝐷′ ⊂ 𝐷 and 𝐷′ ⊆ 𝐶𝑗 for a certain 𝑗 < 𝑘; 

 𝐴(𝐶, 𝐷): the set of all elements in 𝐶\𝐷  

preceding the last element in 𝐷, e.g. if  

𝐶 = {1, … ,10} and 𝐷 = {2, 4, 6}, then  

𝐴(𝐶, 𝐷) = {1, 3, 5}; 

 𝐵(𝐶, 𝐷): the set of all elements in 𝐶\𝐷  

succeeding the last element in 𝐷, e.g. if 𝐷  

and 𝐶 are defined as above then 𝐵(𝐶, 𝐷) 
= {7, … , 10}; 

 𝜇𝐷 or 𝜇(𝐷): the component of 𝐷 with  

the smallest flow capacity, i.e. 𝜑(𝜇𝐷) 
= 𝑚𝑖𝑛 [𝜑(𝑑): 𝑑 ∈ 𝐷]. 

For convenience, we will equate the component with 

their indices throughout the whole paper, i.e. the  

components 𝑐1, 𝑐2,, etc. of G will be referred to as 1, 

2, etc. 

 

Preliminary assumption 

We assume that 𝐶𝑘, 𝑘 ∈ {1, … , 𝑚} are  

ordered according to the increasing flow  

capacity, as required by the proposed  

method. Hence, from the Ford-Fulkerson  

theorem we have:  

 

   Ψ𝑚𝑎𝑥(𝐺) = 𝛷(𝐶1) ≤. . . ≤ 𝛷(𝐶𝑚). (1) 

 

We also assume that Ψ𝑚𝑎𝑥(𝐺) ≥ 2𝑑. 

 

3. Theoretical basis of the proposed method 
 

The proposed method is based on several graph-

theoretical properties of flow networks, which, for 

the sake of clarity, will be formulated as separate 

lemmas and two key theorems. 

 

Lemma 3.1  

If 𝐷 is a set of network components, then all  

min-cut-sets of 𝐺\𝐷 are obtained by removing all 

redundant sets in the family (𝐶1\𝐷),…, (𝐶𝑚\𝐷). 

 

Proof: Let us first assume that 𝐷 fulfills the  

following condition: 𝐶1\𝐷 ≠ ∅ for 𝑘 ∈ {1, … , 𝑚}, 

i.e. none of the sets 𝐶1, … , 𝐶𝑚 is included in 𝐷. It is a 

well-known fact from the reliability theory that 

𝐶1, … , 𝐶𝑚 are all min-cut-sets of 𝐺 if and only if 

 

   𝛤𝑠,𝑡
𝐺 (𝑥) = ⋀ ⋁ 𝑥𝑖𝑖∈𝐶𝑘

𝑚
𝑘=1 . (2) 

 

The 𝑠 − 𝑡 connectivity function of 𝐺\𝐷 is obtained 

by setting 𝑥𝑖 to 0 for 𝑖 ∈ 𝐷 in 𝛤𝑠,𝑡
𝐺  given by (2). Let 

𝐾𝐷 be obtained from {1, … , 𝑚} by removing each  

𝑘 such that (𝐶𝑘\𝐷) is redundant in (𝐶1\𝐷),…,  
(𝐶𝑚\𝐷). We have:  

 

   Γ𝑠,𝑡
𝐺\𝐷(𝑥) = ⋀ ⋁ 𝑥𝑖𝑖∈𝐶𝑘\𝐷

𝑚
𝑘=1 = ⋀ ⋁ 𝑥𝑖𝑖∈𝐶𝑘\𝐷𝑘∈𝐾𝐷

 (3) 

 

which ends the first part of the proof.  

Let now 𝐶𝑘 ⊆ 𝐷 for a certain 𝑘 ∈ {1, … , 𝑚}. It holds 

that 𝐶𝑘\𝐷 = ∅ ⊆ 𝐶𝑗\𝐷 for each 𝑗 ≠ 𝑘, i.e. each 

𝐶𝑗\𝐷 is redundant in regard to 𝐶𝑘\𝐷 which is the 

only (empty) min-cut-set of 𝐺\𝐷. Indeed, since 𝐶𝑘 is 

a cut-set and 𝐶𝑘 ⊆ 𝐷, there is no 𝑠 − 𝑡 path in 𝐺\𝐷, 

hence no components have to be removed from 𝐺\𝐷 

in order to separate 𝑠, and 𝑡, which means that the 

empty set is the only min-cut-set of 𝐺\𝐷. The whole 

proof is thus completed.  

 

Lemma 3.2  

If 𝐷 is a d-cut-set, then there exists a min-cut-set 𝐶𝑘,  

𝑘 ∈ {1, … , 𝑚}, such that 𝐶𝑘 ∩ 𝐷 is also a d-cut-set.  

In other words, each d-cut-set is redundant w.r.t. a  

d-cut-set included in one of the min-cut-sets. 

 

Proof: Let 𝐷 be any set of network components, not 

necessarily a d-cut-set. We will show that 

 

   Ψ𝑚𝑎𝑥(𝐺\𝐷) = 𝑚𝑖𝑛[𝛷(𝐶𝑘\𝐷): 𝑘 ∈ 𝐾𝐷] 
   = 𝑚𝑖𝑛[𝛷(𝐶𝑘\𝐷): 𝑘 ∈ {1, … , 𝑚}]. (4) 

 

The first equality in (4) follows from Lemma 3.1 and 

the Ford-Fulkerson theorem. For the proof of the 

second one let us note that for each 𝑘 ∉ 𝐾𝐷 there 

exists 𝑗 ∈ 𝐾𝐷 such that (𝐶1\𝐷) ⊆ (𝐶𝑘\𝐷), hence 

𝛷(𝐶1\𝐷) ≤ 𝛷(𝐶𝑘\𝐷) which means that each set 

redundant in (𝐶1\𝐷),…, (𝐶𝑚\𝐷) is irrelevant for 

determining the second minimum in (4). Let 

 

   𝑘∗(𝐷) = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑘{1,…,𝑚} (𝐶𝑘\𝐷) (5) 

 

i.e. 𝑘∗(𝐷) is one of these 𝑘 for which (𝐶𝑘\𝐷)  

attains its minimum over 𝑘 ∈ {1, … , 𝑚}. Replacing 𝐷 

with 𝐶𝑘∗(𝐷) ∩ 𝐷 in (4) yields: 

 

   Ψ𝑚𝑎𝑥[𝐺\(𝐶𝑘∗(𝐷) ∩ 𝐷)] 

   = 𝑚𝑖𝑛𝑘∈{1,…,𝑚} 𝛷[𝐶𝑘\(𝐶𝑘∗(𝐷) ∩ 𝐷)]. (6) 

 

Let us note that the right hand side of (6) fulfills the 

following inequality: 

 

   𝑚𝑖𝑛𝑘∈{1,…,𝑚} 𝛷[𝐶𝑘\(𝐶𝑘∗(𝐷) ∩ 𝐷)] 

   ≤ 𝛷[𝐶𝑘∗(𝐷)\(𝐶𝑘∗(𝐷) ∩ 𝐷)]. (7) 

 

In turn, the identity 𝑃\𝑄 = 𝑃\(𝑃 ∩ 𝐷), where 𝑃 and 

𝑄 are arbitrary sets, yields: 
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   𝛷[𝐶𝑘∗(𝐷)\(𝐶𝑘∗(𝐷) ∩ 𝐷)] =  𝛷(𝐶𝑘∗(𝐷)\𝐷). (8) 

 

From (6), (7) and (8) we obtain: 

 

   Ψ𝑚𝑎𝑥[𝐺\(𝐶𝑘∗(𝐷) ∩ 𝐷)] ≤ 𝛷(𝐶𝑘∗(𝐷)\𝐷). (9) 

 

Let now 𝐷 be a d-cut-set. This assumption along 

with (4), (5) and (9) yield: 

 

   𝑑 > Ψ𝑚𝑎𝑥(𝐺\𝐷) = 𝛷(𝐶𝑘∗(𝐷)\𝐷)  

   ≥ Ψ𝑚𝑎𝑥[𝐺\(𝐶𝑘∗(𝐷) ∩ 𝐷)] (10) 

 

which means that 𝐶𝑘∗(𝐷) ∩ 𝐷 is a d-cut-set. Thus, 

𝐶𝑘∗(𝐷) is the sought min-cut-set, Q.E.D.  

 

Theorem 1  

Each min-d-cut-set is a subset of a certain min-cut-

set, i.e. If 𝐷 is a min-d-cut-set, then there exists 𝐶𝑘,  

such that 𝐷 ⊆ 𝐶𝑘, 𝑘 ∈ {1, … , 𝑚}. More precisely, 

𝐷 ⊆ 𝐶𝑘∗(𝐷), where 𝑘∗(𝐷) is defined by (6). It also 

holds that 𝛷(𝐶𝑘∗(𝐷)\𝐷) < 𝑑. 

 

Proof: If 𝐷 is a min-d-cut-set, then, by Lemma 3.2, 

𝐶𝑘∗(𝐷) ∩ 𝐷 is a d-cut-set. Since 𝐷 is a min-d-cut-set 

and 𝐶𝑘∗(𝐷) ∩ 𝐷 ⊆ 𝐷, it holds that 𝐶𝑘∗(𝐷) ∩ 𝐷 = 𝐷, 

because there cannot be a d-cut-set smaller than 𝐷. In 

consequence 𝐷 ⊆ 𝐶𝑘∗(𝐷). The postulated inequality 

follows from (10). 

 

Theorem 2  

Let 𝐷 be a subset of a min-cut-set, i.e. 𝐷 ⊆ 𝐶𝑘, for a 

certain 𝑘 ∈ {1, … , 𝑚}.. Then 𝐷 is a min-d-cut-set, 

externally non-redundant in 𝐶𝑘, if and only if the 

following conditions hold: 

1. 𝛷(𝐶𝑘\𝐷) < 𝑑, 

2. 𝛷(𝐶𝑘\𝐷′) ≥ 𝑑 for each 𝐷′ ⊆ 𝐷, 

3. 𝛷(𝐶𝑗\𝐷) ≥ 𝑑 for each 𝑗 < 𝑘, 𝑘 ≥ 2. 

Such a set 𝐷 is referred to as a min-d-cut-set 

obtained from 𝐶𝑘. 

 

Proof: We first prove the rightward implication.  

Let 𝐷 be a min-d-cut-set non-redundant w.r.t. any  

min-d-cut-set which is a subset of 𝐶𝑗, 𝑗 < 𝑘.  

Assuming that Condition 1 does not hold, i.e. 

𝛷(𝐶𝑘\𝐷) ≥ 𝑑, for each 𝑗 > 𝑘 we have: 

 

   𝛷(𝐶𝑗\𝐷) = 𝛷(𝐶𝑗\𝐶𝑗 ∩ 𝐷) 

   = 𝛷(𝐶𝑗) − 𝛷(𝐶𝑗 ∩ 𝐷) ≥ 𝛷(𝐶𝑘) − 𝛷(𝐷) 

   = 𝛷(𝐶𝑘\𝐷) ≥ 𝑑. (11) 

 

The first two equalities in (11) are due to the fact that 

𝐶𝑗\𝐷 = 𝐶𝑗\𝐶𝑗 ∩ 𝐷 and 𝐶𝑗 ∩ 𝐷 ⊆ 𝐶𝑗. The first 

inequality in (11) is a consequence of the second 

preliminary assumption in Section 2 and the fact that 

𝛷(𝐶𝑗 ∩ 𝐷) ≤ 𝛷(𝐷). The third equality is due to the 

inclusion 𝐷 ⊂ 𝐶𝑘. However, since 𝐷 is a d-cut-set, 

by virtue of (4) we have: 

 

   Ψ𝑚𝑎𝑥(𝐺\𝐷) 

   = 𝑚𝑖 𝑛[𝛷(𝐶1\𝐷), … , 𝛷(𝐶𝑚\𝐷)] < 𝑑, (12) 

 

hence it must hold that 𝛷(𝐶𝑗∗\𝐷) < 𝑑 for a certain 

𝑗∗ < 𝑘. In consequence, 

 

   𝛷(𝐶𝑗∗\𝐷) = 𝛷(𝐶𝑗∗\𝐶𝑗∗ ∩ 𝐷) < 𝑑 (13) 

 

which means that  

 

   Ψ𝑚𝑎𝑥(𝐺\𝐷′) 

   = 𝑚𝑖 𝑛[𝛷(𝐶1\𝐷′), … , 𝛷(𝐶𝑚\𝐷′)] < 𝑑, (14) 

 

where 𝐷′ = 𝐶𝑗∗ ∩ 𝐷. Formula (14) and the inclusion 

𝐷′ ⊆ 𝐷 yield that 𝐷 is redundant w.r.t. 𝐷′ which  

is a subset of 𝐶𝑗∗ . This contradicts the non-

redundancy assumption. Thus, Condition 1 holds, i.e.  

𝛷(𝐶𝑘\𝐷) < 𝑑. Let us note that Condition 3 is also 

fulfilled, because, as just shown, it cannot hold that 

𝛷(𝐶𝑗\𝐷) < 𝑑 for a certain 𝑗 < 𝑘. Finally,  

Condition 2 is fulfilled too, because otherwise (14) 

would hold for a certain 𝐷′ ⊂ 𝐷 and 𝐷 would be 

redundant w.r.t. 𝐷′. 
Let us now prove the opposite implication.  

Condition 1 and formula (4) yield that 

 

   Ψ𝑚𝑎𝑥(𝐺\𝐷) ≤ 𝛷(𝐶𝑘\𝐷) ≤ 𝑑 (15) 

 

i.e. 𝐷 is a d-cut-set in 𝐺. In order to prove that 𝐷 is 

minimal it has to be shown that Ψ𝑚𝑎𝑥(𝐺\𝐷′) ≥ 𝑑 for 

each 𝐷′ ⊂ 𝐷. Let us take any 𝐷′ such that 𝐷′ ⊂ 𝐷. 

Formula (4) yields:  

 

   Ψ𝑚𝑎𝑥(𝐺\𝐷′) = 𝑚𝑖𝑛𝑗∈{1,…,𝑚}𝛷(𝐶𝑗\𝐷′). (16) 

 

Let 𝑗 < 𝑘. Since 𝐷′ ⊂ 𝐷, by virtue of Condition 3 we 

have: 

 

   𝛷(𝐶𝑗\𝐷′) ≥ 𝛷(𝐶𝑗\𝐷) ≥ 𝑑 (17) 

 

while Condition 2 implies that 

 

   𝛷(𝐶𝑗\𝐷′) ≥ 𝑑. (18) 

 

Finally, with regard to (18), for 𝑗 > 𝑘 we have: 

 

   𝛷(𝐶𝑗\𝐷′) = 𝛷(𝐶𝑗\𝐶𝑗 ∩ 𝐷′) 

   = 𝛷(𝐶𝑗) − 𝛷(𝐶𝑗 ∩ 𝐷′) ≥ 𝛷(𝐶𝑘) − 𝛷(𝐷′) 

   = 𝛷(𝐶𝑘\𝐷′) ≥ 𝑑. (19) 
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Formula (19) is justified analogously to (11).  

Formulas (16)-(19) yield that Ψ𝑚𝑎𝑥(𝐺\𝐷′) ≥ 𝑑, 

hence, in view of (15), 𝐷 is a min-d-cut-set in 𝐺.  

It now remains to show the external non-redundancy 

of 𝐷. Let 𝐷′ be an externally non-redundant  

min-d-cut-set included in a certain 𝐶𝑗, 𝑗 < 𝑘. If we 

assume that 𝐷 is redundant w.r.t. 𝐷′, then 𝐷 = 𝐷′  

(𝐷′ ⊂ 𝐷 cannot hold, because 𝐷 would not be  

minimal). Also, 𝛷(𝐶𝑗\𝐷′) < 𝑑, because 𝐷′ is  

included in 𝐶𝑗, hence it fulfills Condition 1 as shown 

in the first part of the proof. Thus, 𝛷(𝐶𝑗\𝐷) 

= 𝛷(𝐶𝑗\𝐷′) < 𝑑 which contradicts Condition 3. If 

𝐷′ is an externally redundant min-d-cut-set included 

in 𝐶𝑗, then it is also included in a certain 𝐶𝑗′, 𝑗
′ < 𝑗,  

where it is non-redundant. Redundancy of 𝐷 w.r.t. 𝐷′  

yields that 𝛷(𝐶𝑗′\𝐷) = 𝛷(𝐶𝑗′\𝐷′) < 𝑑 which also 

contradicts Condition 3. This completes the whole 

proof.  

 

Remark: Let us note that if 𝐷 fulfills Conditions 1 

and 2, then 𝐷 is a m-d-c-s candidate in 𝐶𝑘. Also  

note that if Condition 3 is not fulfilled, then 𝐷 is 

externally redundant w.r.t. 𝐶𝑗 ∩ 𝐷 for a certain 𝑗 < 𝑘. 

If, in turn, Condition 3 holds, then 𝐷 is an externally 

non-redundant min-d-cut-set. 

 

Lemma 3.3  

Let 𝐷 be a subset of 𝐶𝑘 such that 

𝛷[(𝐶𝑘\𝐷) ∪ 𝜇𝐷] ≥ 𝑑, where 𝜇𝐷 is the component of 

𝐷 with the smallest capacity. It then holds that 

𝛷[(𝐶𝑘\𝐷′) ≥ 𝛷[(𝐶𝑘\𝐷) ∪ 𝜇𝐷] for each 𝐷′ ⊂ 𝐷. 

 

Proof: Let 𝐷′ ⊂ 𝐷. The lemma’s assumptions yield 

that 𝜇𝐷 ∉ 𝐶𝑘\𝐷 and 𝐷′ ⊂ 𝐶𝑘. Thus 

 

   𝛷[(𝐶𝑘\𝐷) ∪ 𝜇𝐷] = 𝛷(𝐶𝑘) − 𝛷(𝐷) +  𝜑(𝜇𝐷) (20) 

 

and 

 

   𝛷(𝐶𝑘\𝐷′) = 𝛷(𝐶𝑘) − 𝛷(𝐷′). (21) 

 

Also, 𝑐𝑎𝑟𝑑(𝐷′) ≤ 𝑐𝑎𝑟𝑑(𝐷\𝜇𝐷) and 𝐷′ is obtained 

from 𝐷 by removing components with capacities no 

smaller than 𝜑(𝜇𝐷), hence 

 

   𝛷(𝐷′) ≤ 𝛷(𝐷) − 𝜑(𝜇𝐷). (22) 

 

Thus, finally, we have:  

 

   𝛷(𝐶𝑘\𝐷′) ≥ 𝛷(𝐶𝑘) − 𝛷(𝐷) + 𝜑(𝜇𝐷) 

   = 𝛷[(𝐶𝑘\𝐷) ∪ 𝜇𝐷]. (23) 

 

Corollary: 𝛷(𝐶𝑘\𝐷′) ≥ 𝑑 for each 𝐷′ ⊆ 𝐷 if  

and only if 𝛷[(𝐶𝑘\𝐷) ∪ 𝜇𝐷] ≥ 𝑑. Thus, 𝐷 is  

a m-d-c-s candidate if 𝛷(𝐶𝑘\𝐷) < 𝑑 and  

𝛷[(𝐶𝑘\𝐷) ∪ 𝜇𝐷] ≥ 𝑑. This means that Condition 2 

in Theorem 2 can be replaced by the latter inequality. 

 

Lemma 3.4  

If 𝛷(𝐶𝑗\𝐶𝑘) ≥ 𝑑, for a certain 𝑗 < 𝑘, then 

𝛷(𝐶𝑗\𝐷) ≥ 𝑑 for each 𝐷 ⊆ 𝐶𝑘.  

 

Proof: If 𝐷 ⊆ 𝐶𝑘, then 𝐶𝑗\𝐶𝑘 ⊆ 𝐶𝑗\𝐷, hence 

𝛷(𝐶𝑗\𝐷) ≥ 𝛷(𝐶𝑗\𝐶𝑘), and the lemma follows from 

the assumption that 𝛷(𝐶𝑗\𝐶𝑘)] ≥ 𝑑. 

 

Corollary: If the lemma’s assumption holds and 𝐷 is 

a m-d-c-s candidate in 𝐶𝑘, then the check if 

𝛷(𝐶𝑗\𝐷)] ≥ 𝑑 can be skipped, because it would give 

a positive result. Thus, Condition 3 in Theorem 2 

only needs to be verified for 𝑗 such that 

𝛷(𝐶𝑗\𝐶𝑘)] < 𝑑. 

 

Lemma 3.5  

Let 𝐶𝑘∗ be the set of all “large capacity” components 

in 𝐶𝑘, 𝑘 ∈ {1, … , 𝑚}. Then the following two  

statements hold:  

1. Each m-d-c-s candidate obtained from 𝐶𝑘  

must include 𝐶𝑘∗; 

2. If 𝐶𝑗∗  is a min-d-cut-set and 𝐶𝑗∗ ⊆ 𝐶𝑘∗   

for a certain 𝑗 < 𝑘, then each m-d-c-s  

candidate obtained from 𝐶𝑘 is redundant 

w.r.t. 𝐶𝑗∗ . 

 

Proof: Let us assume that 𝐷 is a m-d-c-s  

candidate obtained from 𝐶𝑘 and 𝐷 does not include 

𝐶𝑘∗. Then there exists at least one 𝑐 ∈ 𝐶𝑘∗\𝐷  

and, since 𝐶𝑘∗ ⊆ 𝐶𝑘, it holds that 𝐶𝑘∗\𝐷 ⊆ 𝐶𝑘\𝐷,  

hence 

 

   𝛷(𝐶𝑘\𝐷) ≥ 𝛷(𝐶𝑘∗\𝐷) ≥ 𝜑(𝑐) ≥ 𝑑. (24) 

 

In view of (24), 𝐷 is not a m-d-c-s candidate, which 

contradicts the initial assumption. Thus Statement 1 

holds. Accordingly, if 𝐷 is a m-d-c-s candidate  

obtained from 𝐶𝑘, then 𝐶𝑘∗ ⊆ 𝐷. The assumption 

that 𝐶𝑗∗ ⊆ 𝐶𝑘∗ yields 𝐶𝑗∗ ⊆ 𝐷, hence 𝐷 is redundant 

w.r.t. 𝐶𝑗∗ , Q.E.D. 

 

Corollary: Lemma 3.5 allows to easily ascertain if 

each m-d-c-s candidate in 𝐶𝑘 is redundant in regard 

to a m-d-c-s composed of large capacity components 

of 𝐶𝑗, 𝑗 < 𝑘. Clearly, 𝐶𝑘 is to be omitted in the  

process of generating min-d-cut-sets from min-cut-

sets. 
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4. The considered method in outline 
 

Now we will present in outline the two algorithms 

whose detailed pseudo-codes are given in the next 

two sections. We will also briefly explain why two 

algorithms have been developed instead of one. 

From Theorems 1 and 2 we conclude that, in order to 

find all the min-d-cut-sets of 𝐺, we have to find all 

the subsets of each 𝐶𝑘, 𝑘 = 1, … , 𝑚, satisfying the 

three conditions in Theorem 2. In more detail, min-d-

cut-sets are generated from each successive 𝐶𝑘,  

𝑘 = 1, … , 𝑚, with the use of Alg. 1 if 𝛷(𝐶𝑘) < 2𝑑,  

or Alg. 2 if 𝛷(𝐶𝑘) ≥ 2𝑑. Algorithm 1 arranges the 

components of 𝐶𝑘 according to decreasing flow  

capacities, then it generates successive subsets of 𝐶𝑘 

and checks them for being min-d-cut-sets. In turn, 

Algorithm 2 arranges the components of 𝐶𝑘  

according to increasing flow capacities, then it  

generates successive subsets of 𝐶𝑘 and checks their 

complements for being min-d-cut-sets. The following 

subset generation policy is used: in step 1 the  

successive one-element subsets of 𝐶𝑘 are generated 

(empty set is augmented with the successive  

elements of 𝐵(𝐶𝑘,)); in step 𝑗 > 1 each 𝑗-element 

subset 𝐶 of 𝐶𝑘 such that 𝐵(𝐶𝑘 , 𝐶) =  is augmented 

with the successive elements of 𝐵(𝐶𝑘 , 𝐶),  

𝑗 = 1, … , 𝑘 − 1. For better understanding, let us  

apply the above policy to the set 𝐶1 = {2, 3, 4, 5} (see 

Figure 1). The following subsets are generated in the 

successive steps: 

 step 1 – {2}, {3}, {4}, {5}; 

 step 2 – {2, 3}, {2, 4}, {2, 5};  

note that 𝐵(𝐶1, {2}) = {3, 4, 5}; 

 step 3 – {3, 4}, {3, 5};  

note that 𝐵(𝐶1, {3}) = {4, 5}; 

 step 4 – {4, 5};  

note that 𝐵(𝐶1, {4}) = {5}; 

 step 5 – {2, 4, 5}, {2, 3, 5}, {2, 3};  

note that 𝐵(𝐶1, {2, 3}) = {4, 5}; 

 step 6 – {2, 4, 5}; 

 step 7 – {3, 4, 5}; 

 step 8 – {2, 3, 4, 5}. 

 

 
 

Figure 1. An example network system (the network 

structure is the same as in [2]). The links’ capacities 

are given in parentheses next to the links’ numbers 

This standard procedure generates one instance  

of each subset of a finite set. However, if thus  

obtained subset of 𝐶𝑘 is a min-d-cut-set, it is not 

further augmented, because non-minimal d-cut-sets 

would be generated. In consequence, the number  

of subsets of 𝐶𝑘 generated by Algorithm 1 or 2 is 

substantially smaller than 2𝑐𝑎𝑟𝑑(𝐶𝑘) − 1 which is the 

number of all non-empty subsets of 𝐶𝑘. 

The min-cut-sets of the above network, ordered  

by the increasing flow capacity, are listed below. 

 𝐶1 = {6, 5, 4}, 𝛷(𝐶1) = 15, 

 𝐶2 = {8, 11, 4}𝛷(𝐶2) = 18, 

 𝐶3 = {1, 2}, 𝛷(𝐶3) = 19, 

 𝐶4 = {10, 11,9}, 𝛷(𝐶4) = 20, 

 𝐶5 = {4,7,10,11}, 𝛷(𝐶5) = 20, 

 𝐶6 = {6,3,1}, 𝛷(𝐶6) = 23, 

 𝐶7 = {4,5,3,2}, 𝛷(𝐶7) = 25, 

 𝐶8 = {5,7,6,9}, 𝛷(𝐶8) = 25, 

 𝐶9 = {7,11,8,9}, 𝛷(𝐶9) = 28, 

 𝐶10 = {5,10,6,8,9}, 𝛷(𝐶10) = 33, 

 𝐶11 = {5,7,3,2,9}, 𝛷(𝐶11) = 35, 

 𝐶12 = {5,11,3,8,1}, 𝛷(𝐶12) = 36, 

 𝐶13 = {5,7,10,11,3,1}, 𝛷(𝐶13) = 38, 

 𝐶14 = {5,10,3,8,2,9}, 𝛷(𝐶14) = 43. 

Let 𝐶 be a currently generated subset of 𝐶𝑘, and let 

𝐷 = 𝐶 (Algorithm 1) or 𝐷 = 𝐶𝑘\𝐶 (Algorithm 2). 

The check whether 𝐷 is a min-d-cut-set is done as 

follows. First it is checked if 𝛷(𝐶𝑘\𝐷) < 𝑑  

(Condition 1 in Theorem 2). In case of a positive 

check, 𝐷 is a d-cut-set in 𝐺 (see first part of the proof 

of Theorem 2) and it is checked whether 

𝛷[𝐶𝑘\(𝐷\{𝜇𝐷})] ≥ 𝑑 (see corollary to Lemma 3.3). 

If this inequality holds, 𝐷 is marked as a  

m-d-c-s candidate, i.e. in order to state whether 𝐷  

is a min-d-cut-set it has yet to be verified whether 

Condition 3 in Theorem 2 holds. It is important that 

once 𝐷 turns out to be a m-d-c-s candidate, then 𝐶  

is not further augmented, because d-cut-sets larger 

than 𝐷 = 𝐶 are not min-d-cut-sets (Algorithm 1), 

while subsets of 𝐷 = 𝐶𝑘\𝐶 are not even d-cut-sets 

(Algorithm 2).  

The different handling of the cases 𝛷(𝐶𝑘) < 2𝑑  

and 𝛷(𝐶𝑘) ≥ 2𝑑 allows for obtaining m-d-c-s  

candidates without first generating internally  

redundant d-cut-sets (Algorithm 1), or generating 

only a small number of them before a m-d-c-s candi-

date is obtained (Algorithm 2). Also, it ensures that 

only a small number of non-d-cut-sets is generated 

by both algorithms. Other advantages of this distinc-

tion will be given in Sections 4 and 5. 

The above outlined method is an improvement of  

the procedures presented in [2] and [5], also in the 

context of internal and external redundancy – the 

concepts introduced by the authors of the aforemen-

tioned papers, whose definitions are given in  
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Notation Section. It is essential to check whether  

a newly generated subset of 𝐶𝑘 is internally  

or externally redundant, because if it occurs  

to be a min-d-cut-set, then its supersets need not  

be generated, since none of them is a min-d-cut set. 

Let us note that Condition 3 in Theorem 2 is  

a criterion used for checking the absence of external 

redundancy. Indeed, let us suppose that Condition 3 

does not hold, i.e. 𝐷 is a d-cut-set obtained from 𝐶𝑘 

and 𝛷(𝐶𝑗\𝐷) < 𝑑 for a certain 𝑗 < 𝑘. Since 

𝐶𝑗\𝐷 = 𝐶𝑗\(𝐶𝑗 ∩ 𝐷), it follows from (4) that 

Ψ𝑚𝑎𝑥(𝐺\(𝐶𝑗 ∩ 𝐷)) < 𝑑. Moreover, 𝐶𝑗 ∩ 𝐷 ⊆ 𝐶𝑗, 

thus 𝐶𝑗 ∩ 𝐷 is a d-cut set obtained from 𝐶𝑗. Thus, the 

inclusion 𝐶𝑗 ∩ 𝐷 ⊆ 𝐷 implies that 𝐷 is externally 

redundant w.r.t. 𝐶𝑗 ∩ 𝐷. In consequence, 𝐷 is not a 

min-d-cut-set, or 𝐷 is a duplicate one. Let us also 

note that, in view of Condition 3 in Theorem 2, it is 

only required to compare a d-cut-set obtained from 

𝐶𝑘 with 𝐶𝑗, 𝑗 < 𝑘, but not with 𝐶𝑗, 𝑗 > 𝑘, in order to 

state whether it is a min-d-cut-set. 

 

5. Generating min-d-cut-sets in decreasing 

flow capacities 
 

The case 𝛷(𝐶𝑘) < 2𝑑 is handled by Algorithm 1 

which requires that the components of 𝐶𝑘 be ordered 

by decreasing flow capacities. Algorithm 1 is based 

on the following four lemmas. 

 

Lemma 4.1 

Let 𝐶 be a subset of 𝐶𝑘 such that  

1. 𝛷(𝐶𝑘\𝐶) ≥ 𝑑, 

2. 𝛷(𝐶𝑘\(𝐶 ∪ {𝑏})) < 𝑑, 

for a certain 𝑏 ∈ 𝐵(𝐶𝑘, 𝐶). 

𝐶 ∪ {𝑏} is then a min-d-cut-set candidate in 𝐶𝑘.  

The second assumption says that the failure of all 

components in 𝐶 ∪ {𝑏} causes the capacity of 𝐶𝑘  

to fall below value 𝑑. The lemma is also valid for 

𝐶 = , in which case {𝑏} is a one-element  

min-d-cut-set candidate. 

 

Proof: Let us put 𝐷 = 𝐶 ∪ {𝑏} and note that, due  

to the ordering of components in 𝐶𝑘, 𝑏 is the  

component of 𝐷 with the smallest capacity.  

Now Lemma 4.1 is a consequence of corollary to 

Lemma 3.3.  

 

Remark: Lemma 4.1 provides a simple criterion  

for stating whether 𝐶 ∪ {𝑏}, where 𝐶 is a subset  

of 𝐶𝑘, is a m-d-c-s candidate in 𝐶𝑘. Let us note that 

the lemma’s assumptions are equivalent to the first 

two conditions in Theorem 2, where 𝐷 = 𝐶 ∪ {𝑏}. 

 

 

 

Lemma 4.2 

Let 𝐶 be a subset of 𝐶𝑘 such that 𝛷[𝐴(𝐶𝑘, 𝐶)] ≥ 𝑑. It 

then holds that 𝛷[𝐶𝑘\(𝐶 ∪ 𝐶′)] ≥ 𝑑 for each 

𝐶′ ⊆ 𝐵(𝐶𝑘 , 𝐶), i.e. no superset of 𝐶 is a m-d-c-s  

candidate in 𝐶𝑘. 

 

Proof: If 𝐶′ ⊆ 𝐵(𝐶𝑘, 𝐶) then  

 

   𝐴(𝐶𝑘, 𝐶) ⊆ 𝐶𝑘\(𝐶 ∪ 𝐶′),  

 

because 𝐴(𝐶𝑘, 𝐶) ⊆ 𝐶𝑘 and 𝐴(𝐶𝑘 , 𝐶) has no common 

elements with either 𝐶 or 𝐶′. Thus  

 

   𝛷[𝐶𝑘\(𝐶 ∪ 𝐶′)] ≥ 𝛷[𝐴(𝐶𝑘, 𝐶)] ≥ 𝑑,  

 

which ends the proof. 

 

Remark: Lemma 4.2 provides a simple way to check 

whether a subset of 𝐶𝑘 is non-augmentable, thus 

allowing to reduce the number of subsets generated 

from 𝐶𝑘. 

 

Lemma 4.3  

Let 𝑏1, 𝑏2… be the consecutive elements of 

𝐵(𝐶𝑘, 𝐶). Then 𝛷[𝐶𝑘\(𝐶 ∪ {𝑏𝑖})] is a non-

decreasing sequence with respect to 𝑖 ≥ 1. 

 

Proof: The lemma follows from the fact that 𝜑(𝑏𝑖), 

𝑖 ≥ 1, is a non-increasing sequence. 

 

Corollary: if 𝛷[𝐶𝑘\(𝐶 ∪ {𝑏𝑖})] ≥ 𝑑 then 

𝛷[𝐶𝑘\(𝐶 ∪ {𝑏𝑗})] ≥ 𝑑 for 𝑗 > 𝑖. This property  

allows not to compute the latter capacities. Lemma 

4.3 is not referenced in Algorithm 1, and its role  

is further explained in the example following  

Algorithm 1. 

 

Lemma 4.4 

If 𝛷(𝐶𝑘) < 2𝑑 and 𝜑(𝑐∗) ≥ 𝑑 for certain 𝑐∗ ∈ 𝐶𝑘 

(i.e. 𝑐∗ is a large capacity component), then {𝑐∗} is 

the only m-d-c-s candidate in 𝐶𝑘. 

 

Proof: From the assumptions we have:  

 

   𝛷(𝐶𝑘\{𝑐∗}) ≤ 𝛷(𝐶𝑘) − 𝜑(𝑐∗) < 2𝑑 − 𝑑 = 𝑑. (25) 

 

The second preliminary assumption in Notation  

Section yields that 

 

   𝛷(𝐶𝑘\) = 𝛷(𝐶𝑘) ≥ 𝛷(𝐶1) = Ψmax(𝐺) ≥ 𝑑.(26) 

 

Since  is the only subset of {𝑐∗}, (25) and (26) 

yield that {𝑐∗}  is a m-d-c-s candidate in 𝐶𝑘. Let us 

suppose that 𝐷 is a m-d-c-s candidate in 𝐶𝑘, and 

𝐷 ≠ {𝑐∗}. 𝐷 must include 𝑐∗, because otherwise 𝑐∗ 
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would belong to 𝐶𝑘\𝐷, the inequalities 

𝛷(𝐶𝑘\𝐷) ≥ 𝜑(𝑐∗) ≥ 𝑑 would hold, and 𝐷 would 

not be a m-d-c-s candidate. In turn, (25) implies that 

for 𝐷′ = {𝑐∗} ⊂ 𝐷 we have: 
 

   𝛷(𝐶𝑘\𝐷′) < 𝑑 (27) 

thus D does not fulfill the second criterion to be a  

m-d-c-s candidate. This ends the proof.  

If 𝛷(𝐶𝑘) < 2𝑑 then, based on the Lemmas 4.1-4.4, 

and the rules from Section 4, min-d-cut-sets are  

obtained from 𝐶𝑘 by the following algorithm: 

 

 

Algorithm 1  

For k = 1 to max[ k: (Ck) < 2d ] do 

    Check if ({c1, k})  d, where c1, k is the first element of Ck. If so, mark {c1, k} as m-d-c-s 

        candidate (lemma 4.4), check it for ER*, and pass to the next k; 

    D  ; 

    For j = 0 to |Ck| – 1 do 

        If each j-element set generated from Ck is marked, pass to the next k; 

        Else 

            For each unmarked j-element set C generated from Ck do 

                For the successive bB(Ck, C) do 

                    D  C{b} (augment C with {b}); 

                    In the case “(Ck \ D) < d” do 

                        mark D as m-d-c-s candidate (lemma 4.1), check it for ER*, and pass to next b  

                        or to next j-element C (if b is the last element of Ck); 

                    In the case “(Ck \ D)  d” do 

                        If b is the last element of Ck, mark D as non-augmentable (D cannot be augmented, 

                        because B(Ck, D) = ) and pass to next j-element C; 

                        If [A(Ck, D)]  d, mark D as non-augmentable (lemma 4.2) and pass to next 

                            j-element C; 

 

Remark to the command marked with asterisk:  

ER denotes external redundancy. If ER occurs,  

i.e. 𝛷(𝐶𝑗\𝐷) < 𝑑 for a certain 𝑗 such that 𝑗 < 𝑘 and 

𝛷(𝐶𝑗\𝐶𝑘) < 𝑑, then 𝐷 is externally redundant w.r.t. 

𝐶𝑗 𝐷. Otherwise 𝐷 is a min-d-cut-set, non-

externally redundant in 𝐶𝑘 (see Lemma 3.4 and  

Theorem 2 with the remark following it). 

It should be noted that no internally redundant  

d-cut-sets are generated by Algorithm 1, because its 

logic and Lemma 4.1 yield that if the obtained set 𝐷 

is a d-cut-set, then D is a m-d-c-s candidate.  

Although Algorithm 1 can generate non-d-cut-sets 

(the case 𝛷(𝐶𝑘\𝐷) ≥ 𝑑), their number is small due 

to the condition 𝛷(𝐶𝑘) < 2𝑑. 

Let us now trace the flow of Algorithm 1 for the  

example network in Figure 1. Let 𝑑 = 10. There are 

three min-cut-sets with capacities lower than 2𝑑, i.e. 

𝐶1 = {6,5,4}, 𝐶2 = {8,11,4} and 𝐶3 = {1,2} with 

𝛷(𝐶1) = 15, 𝛷(𝐶2) = 18, 𝛷(𝐶3) = 19. The results 

of the successive operations are presented in the  

tables below – one table for each 𝑘. The markings 

used in the 4-th and 6-th column have the following 

meanings: 

 * – 𝐷 is an externally non-redundant min-d-

cut-set (thus 𝐷 is non-augmentable); 

 # – 𝐷 is non-augmentable, because 

𝛷[𝐴(𝐶𝑘, 𝐷)] exceeds 𝑑 (see Lemma 4.2); 

 | – 𝐷 is non-augmentable, because 𝑏 is the 

last component in 𝐶𝑘. This marking is only 

used if * and # do not apply; 

 × – cell with a value that need not be  

computed. 

Starting from 𝑘 = 2, the values of 𝛷(𝐶𝑗\𝐶𝑘), 𝑗 < 𝑘, 

are listed at the top of each table in order to indicate 

which 𝐶𝑗 can be omitted when 𝐷 is checked for ER 

redundancy, i.e. when Condition 3 in Theorem 2 is 

verified. 𝐶𝑗 is omitted in the following three cases: 

1. 𝛷(𝐶𝑗\𝐶𝑘) ≥ 𝑑 (Lemma 3.4), 

2. 𝐶𝑖
∗ ⊆ 𝐶𝑗

∗ for some 𝑖 < 𝑗 and 𝐶𝑖
∗ is a min-d-

cut-set (Lemma 3.5), 

3. the above two conditions do not hold, but all 

m-d-c-s candidates obtained from 𝐶𝑗 are  

redundant (e.g. 𝑗 = 6 or 𝑗 = 10 as shown  

in Section 6). 

It is important that the number of 𝑗 fulfilling the last 

condition grows rapidly as 𝑘 increases, thus, in  

practice, not a large number of ER checks has to be 

performed. 

 

Remarks:  

1. As follows from Lemma 4.3, if 

𝛷(𝐶𝑘\(𝐶 ∪ {𝑏})) ≥ 𝑑 for a certain  

𝑏 ∈ 𝐵(𝐶𝑘 , 𝐶), then 𝛷[𝐶𝑘\(𝐶 ∪ {𝑏+})] ≥ 𝑑 

for each 𝑏+ that succeeds 𝑏 in 𝐵(𝐶𝑘 , 𝐶), thus 
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there is no need to compute 𝛷[𝐶𝑘\(𝐶 ∪
{𝑏+})], because we only need to know if it is 

greater or equal to 𝑑.  

2. As follows from Algorithm 1, 𝛷[A(𝐶𝑘\𝐷)] 
is only computed if 𝛷(𝐶𝑘\𝐷) ≥ 𝑑. 

 

Table 1. Output of Algorithm 1 for 𝑘 = 1 
 

 

Table 2. Output of Algorithm 1 for 𝑘 = 2: 

𝛷(𝐶1\𝐶2) = 11 (ER check not needed) 
 

 

𝑘 = 3: 𝛷(𝐶1\𝐶3) = 15, 𝛷(𝐶2\𝐶3) = 18 (ER check 

not needed). 

Output of Algorithm 1 for 𝑘 = 3: 

{1}*. 
 
Remark: According to Lemma 4.4, {1}* is the only 

m-d-c-s candidate obtained from 𝐶3. 

 

6. Generating min-d-cut-sets in increasing 

flow capacities 
 

The case 𝛷(𝐶𝑘) ≥ 2𝑑 is handled by Algorithm 2 

which requires that the components of 𝐶𝑘 be ordered 

according to increasing flow capacities. Algorithm 2 

is based on the following four lemmas. 

 
Lemma 5.1 

Let 𝐶 be a subset of 𝐶𝑘 such that 

1. (𝐶) < 𝑑, 

2. [𝐶 ∪ 𝜇(𝐶𝑘\𝐶)] ≥ 𝑑. 

Then (𝐶𝑘\𝐶) is a m-d-c-s candidate in 𝐶𝑘. 

 

Proof: Let us put 𝐷 = 𝐶𝑘\𝐶 and note that, due  

to the ordering of components in 𝐶𝑘, 𝜇(𝐶𝑘\𝐶) is  

the component of 𝐷 with the smallest capacity.  

Now Lemma 5.1 is a consequence of corollary to 

Lemma 3.3. 

 

Remark: Lemma 5.1 provides a simple criterion for 

stating whether 𝐶𝑘\𝐶, where 𝐶 is a subset of 𝐶𝑘,  

is a m-d-c-s candidate in 𝐶𝑘. Let us note that the 

lemma’s assumptions are equivalent to the first two 

conditions in Theorem 2, where 𝐷 = 𝐶𝑘\𝐶. 

 

Lemma 5.2 

If the components of 𝐶𝑘 are ordered according  

to increasing capacities, 𝐶 is a 𝑗-element subset  

of 𝐶𝑘, 𝐶 is composed of consecutive elements of 𝐶𝑘, 

and (𝐶) ≥ 𝑑, then (𝐶′) ≥ 𝑑 for each 𝑗-element 𝐶′ 
generated subsequently to 𝐶. 

 

Proof: Let 𝐶 = {𝑐1, … , 𝑐𝑗} where 𝑐1, … , 𝑐𝑗 are  

consecutive components of 𝐶𝑘, and 

𝐶′ = {𝑐′
1, … , 𝑐′𝑗,} be a 𝑗-element set generated sub-

sequently to 𝐷. First, it will be proved by induction 

that 𝑐′1 > 𝑐1. This fact is obvious for 

𝑗 = 1, in which case 𝑐′1 > 𝑐1, and let us assume that 

it holds for a certain 𝑗 ≥ 1. Let 𝐶+ = {𝑐1
+, … , 𝑐𝑗+1

+ } 

be a (𝑗 + 1)-element subset of 𝐶𝑘 composed of its 

consecutive components. Clearly, 𝐶+ is the first 
(𝑗 + 1)-element set obtained by augmenting 

{𝑐1
+, … , 𝑐𝑗

+}, and, according to the subset generating 

policy, each subsequent (𝑗 + 1)-element set 𝐶+′, is 

obtained by augmenting either {𝑐1
+, … , 𝑐𝑗

+} or 

{𝑐1
+′, … , 𝑐𝑗

+′} which is one of 𝑗-element sets  

generated subsequently to {𝑐1
+, … , 𝑐𝑗

+}. Thus, the first 

element of 𝐶+′ is equal either to 𝑐1
+ or to 𝑐1

+′. The  

induction assumption yields that 𝑐1
+′ > 𝑐1

+, hence the 

first element of 𝐶+′ is greater or equal to 𝑐1
+, which 

means that the fact to be proved holds for 𝑗 + 1, and, 

in consequence, for any 𝑗 ≥ 1. 

Now we can pass to the proper proof. Since the  

components of 𝐶 and 𝐶′ are ordered according to 

increasing flow capacities, we have: 

 

   𝜑(𝑐1) ≤ ⋯ ≤ 𝜑(𝑐𝑗) (28) 

 

and, in view of the fact proved above, 

 

   𝜑(𝑐1) ≤ 𝜑(𝑐′1) ≤ ⋯ ≤ 𝜑(𝑐′𝑗). (29) 

 

As 𝑐1, … , 𝑐𝑗 are consecutive components of 𝐶𝑘, from 

(28) and (29) it follows that 𝜑(𝑐′1) ≥ 𝜑(𝑐1),…, 

𝑗 𝐶 b 
𝐷
= 𝐶 ∪ {𝑏} 

𝛷(𝐶𝑘\𝐷) 𝛷[A(𝐶𝑘\𝐷)] 

0  6 {6}* 9  

0  5 {5} 10 6 

0  4 
{4}# 

(L. 4.2) 
10 

(L. 4.3) 
11 

1 {5} 4 {5,4}* 6  

𝑗 𝐶 b 
𝐷

= 𝐶 ∪ {𝑏} 

𝛷(𝐶𝑘

\𝐷) 

𝛷[A(𝐶𝑘

\𝐷)] 

0  8 {8} 10 0 

0  11 {11} 
10 

(L. 4.3) 
8 

0  4 
{4}# 

(L. 4.2) 
10 

(L. 4.3) 
14 

1 {8} 11 {8,11}* 4  

1 {8} 4 {8,4}* 6  

1 {11} 4 {11,4}* 8  
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 𝜑(𝑐′𝑗) ≥ 𝜑(𝑐𝑗) hence (𝐶′) ≥ (𝐶)] ≥ 𝑑, q.e.d. 

 

Corollary: If 𝐶 fulfills the assumptions of Lemma 

5.2, then the capacities of all 𝑗-element subsets of 𝐶𝑘 

generated subsequently to 𝐶 are greater or equal to 𝑑, 

hence the complements (w.r.t. 𝐶𝑘) of these subsets 

are not m-d-c-s candidates. 

 

Lemma 5.3  

If the components of 𝐶𝑘 are ordered according to 

increasing capacities, and 𝑏𝑥 is the first element of 

𝐵(𝐶𝑘, 𝐶) = {𝑏1, 𝑏2, … } such that [𝐶 ∪ 𝑏𝑥] ≥ 𝑑, 

then the capacities of all one-element augmentations 

of 𝐶 subsequent to 𝐶 ∪ {𝑏𝑥} are greater or equal to 𝑑, 

i.e. [𝐶 ∪ 𝑏𝑦] ≥ 𝑑, where 𝑥 ≤ 𝑦 ≤ 𝑐𝑎𝑟𝑑[𝐵(𝐶𝑘, 𝐶)].  

 

Proof: The lemma’s assumptions yield that 

[𝐶 ∪ 𝑏𝑦] ≥ [𝐶 ∪ 𝑏𝑥] ≥ 𝑑, q.e.d. 

 

Corollary: If 𝐶 fulfills the assumptions of Lemma 

5.3, then the complements (w.r.t. 𝐶𝑘) of all one-

element augmentations of 𝐶 subsequent to 𝐶 ∪ {𝑏𝑖} 

are not m-d-c-s candidates. 

 

Lemma 5.4  

Let 𝐵(𝐶𝑘, 𝐶) = {𝑏1, 𝑏2, … }, where 𝑏𝑖, 𝑖 ≥ 1, are or-

dered according to increasing capacities. Then 

[𝐶 ∪ 𝑏𝑖 ∪ 𝜇[𝐶𝑘\(𝐶 ∪ 𝑏𝑖)]] is non-decreasing with 

respect to 𝑖 ≥ 1. 

 

Proof: We will consider two cases: 𝐴(𝐶𝑘 , 𝐶) =  

and 𝐴(𝐶𝑘 , 𝐶) = . In the first case we have: 

 

   𝜇[𝐶𝑘\(𝐶 ∪ 𝑏1)] = 𝑏2, (30) 

 

   𝜇[𝐶𝑘\(𝐶 ∪ 𝑏𝑖)] = 𝑏1, 𝑖 ≥ 2. (31) 

 

 

It thus follows that  

 

   [𝐶 ∪ 𝑏1 ∪ 𝜇[𝐶𝑘\(𝐶 ∪ 𝑏1)]] (32) 

   = (𝐶) + 𝜑(𝑏1) + 𝜑(𝑏2), 

 

   [𝐶 ∪ 𝑏2 ∪ 𝜇[𝐶𝑘\(𝐶 ∪ 𝑏2)]] (33) 

   = (𝐶) + 𝜑(𝑏2) + 𝜑(𝑏1), 

 

   [𝐶 ∪ 𝑏𝑖 ∪ 𝜇[𝐶𝑘\(𝐶 ∪ 𝑏𝑖)]] 

   = (𝐶) + 𝜑(𝑏𝑖) + 𝜑(𝑏1), 𝑖 ≥ 3. (34) 

 

In the second case, i.e. 𝐴(𝐶𝑘 , 𝐶) = , we have:  

 

   𝜇[𝐶𝑘, 𝐶 ∪ {𝑏𝑖}] = 𝑎1, 𝑖 ≥ 1, (35) 

 

where 𝑎1 is the first element of 𝐴(𝐶𝑘, 𝐶).  

In consequence  

 

   [𝐶 ∪ 𝑏𝑖 ∪ 𝜇[𝐶𝑘\(𝐶 ∪ 𝑏𝑖)]] 
   = (𝐶) + 𝜑(𝑏𝑖) + 𝜑(𝑎1), 𝑖 ≥ 1. (36) 

 

Since 𝜑(𝑏𝑖) is non-decreasing in 𝑖, 𝑖 ≥ 1, the lem-

ma’s thesis follows from (34) and (36). 

 

Corollary: If 𝑏 is the first element in 𝐵(𝐶𝑘, 𝐶) such 

that [𝐶 ∪ 𝑏 ∪ 𝜇[𝐶𝑘\(𝐶 ∪ 𝑏)]] ≥ 𝑑, 𝑏+ succeeds  

𝑏 in 𝐵(𝐶𝑘 , 𝐶), and 𝐶+ = 𝐶 ∪ 𝑏+, then 

[𝐶+ ∪ 𝜇[𝐶𝑘\𝐶+]] ≥ 𝑑. Thus, the last inequality 

need not be checked in order to ascertain, as per 

Lemma 5.1, whether 𝐶𝑘\𝐶+ is a m-d-c-s candidate. 

Lemma 5.4 is not referenced in Algorithm 2, and its 

role is further explained in the example following  

 

Algorithm 2. 

If 𝛷(𝐶𝑘) ≥ 2𝑑, then, based on the Lemmas 5.1-5.3, 

and the rules from Section 4, min-d-cut-sets are ob-

tained from 𝐶𝑘 by the following algorithm: 

Algorithm 2 

For k = min [ k: (Ck)  2d ] to m do 

    If Ck fulfills lemma 3.5 pass to the next k; 

    D ; 

    For j = 0 to |Ck| – 1 do 

        If each j-element set generated from Ck is marked, pass to the next k; 

        For each unmarked j-element C generated from Ck do * 

            For each b  B(Ck, C), where {b} is unmarked and (b) < d, do * 

                C+  C{b} (augment C with {b}); 

                In the case “(C+) < d” do 

                    If [ C+  (Ck \ C+) ]  d, mark C+ as non-augmentable, mark Ck \ C+ as m-d-c-s 

                    candidate, and check it for ER; ** 

                In the case “(C+)  d” do 

                    Mark C+ as non-augmentable; 

                    If C+ is composed of consecutive elements of Ck, pass to the next j; *** 

                    Pass to the next j-element C; **** 
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Remarks to the commands marked with asterisks: 

 adding any 𝑏 to a marked set 𝐶, or adding 𝑏 

such that 𝜑(𝑏) ≥ 𝑑 to any 𝐶, yields 𝐶+ such 

that (𝐶+) ≥ 𝑑, i.e. 𝐶𝑘\𝐶+ is not a m-d-c-s 

candidate;  

 ** see Lemma 5.1; 

 *** the capacities of all (𝑗 + 1)-elements 

subsets of 𝐶𝑘 generated subsequently to 𝐶+ 

would be greater or equal to 𝑑 (see Lemma 

5.2); 

 **** the capacities of subsequent one-

element augmentations of 𝐶 would be great-

er or equal to 𝑑 (see Lemma 5.3). 

It should be noted that Algorithm 2 generates as few 

non-d-cut-sets as possible (the case (𝐶+) ≥ 𝑑), and 

although it can generate internally redundant  

d-cut-sets (it happens if (𝐶+) < 𝑑 and 

[𝐶+ ∪ 𝜇[𝐶𝑘\𝐶+]] < 𝑑), their number is small due 

to the condition (𝐶𝑘) ≥ 2𝑑. Furthermore, the IR 

check is done instantaneously (it is positive if 

[𝐶+ ∪ 𝜇[𝐶𝑘\𝐶+]] < 𝑑) and no comparison with 

the previously found d-cut-sets is required.  

Algorithm 2 will be illustrated by applying it to the 

network in Figure 1. The results of the successive 

operations are presented in tables, one table for each 

𝑘 = 4, … , 𝑚. The algorithm starts with 𝑘 = 4, the 

first 𝑘 for which (𝐶𝑘) ≥ 2𝑑. The markings used in 

the 4-th and 7-th column have the following  

meanings: 

 * – 𝐶𝑘\𝐶+ is an externally non-redundant 

min-d-cut-set; 

 ** – 𝐶𝑘\𝐶+ is an ER m-d-c-s candidate; 

 # – C+ fulfills the assumptions of Lemma 5.2 

or 5.3; 

 | – 𝑏 is the last component of 𝐶𝑘 (this  

marking is only used if * and # do not  

apply); 

  – cell with a value that need not be  

computed. 

At the top of each table the values of (𝐶𝑗\𝐶𝑘), 

𝑗 < 𝑘, are listed in order to indicate which 𝐶𝑗 can be 

omitted when 𝐷 is checked for ER redundancy, i.e. 

when Condition 3 in Theorem 2 is verified. 

Remark: As follows from Lemma 5.4, if 

[𝐶+ ∪ 𝜇[𝐶𝑘\𝐶+]] ≥ 𝑑, where 𝐶+ = 𝐶 ∪ {𝑏}, then 

[(𝐶 ∪ 𝑏+) ∪ 𝜇[𝐶𝑘(𝐶 ∪ 𝑏+)]] ≥ 𝑑, where 𝑏+  

succeeds 𝑏 in 𝐵(𝐶𝑘, 𝐶). Thus, there is no need to 

compute [𝐶𝑘\(𝐶 ∪ {𝑏})], because we only need to 

know if it is greater or equal to 𝑑.  

𝑘 = 6: Each m-d-c-s obtained from 𝐶6 is redundant 

(Lemma 3.5). 

Output of Algorithm 2 for 𝑘 = 6: none. 

 

 

Table 3. Output of Algorithm 2 for 𝑘 = 4: 

(𝐶1\𝐶4) = 15, (𝐶2\𝐶4) = 12, (𝐶3\𝐶4) = 19, 
(ER check not needed) 
 

𝑗 𝐶 𝑏 𝐶+ (𝐶+) 
[𝐶+

∪ 𝜇[𝐶𝑘\𝐶+]] 
𝐷 = 𝐶𝑘

\𝐶+ 

0  10 {10}* 5 11 {11,9}* 

0  11 {11}* 6 11 (L. 5.4) {10,9}* 

0  9 {9}* 9 11 (L. 5.4) {10,11}* 

 

Table 4. Output of Algorithm 2 for 𝑘 = 5: 
(𝐶1\𝐶5) = 11, (𝐶2\𝐶5) = 12, (𝐶3\𝐶5) = 19,
(𝐶4\𝐶5) = 9 (check ER for 𝑘 = 4) 
 

𝑗 𝐶 𝑏 𝐶+ (𝐶+) 

[𝐶+

∪ 𝜇[𝐶𝑘

\𝐶+]] 

𝐷 = 𝐶𝑘

\𝐶+ 

0  4 {4} 4 9 Not 

m-d-c-s 

0  7 {7} 5 9 Not 

m-d-c-s 

0  10 {10} 5 9 Not 

m-d-c-s 

0  11 {11}* 6 10 {4,7,10}* 

1 {4} 7 {4,7}* 9 14 {10,11}** 

1 {4} 10 {4,10}* 9 14 (L. 

5.4) 

{7,11}* 

 

Table 5. Output of Algorithm 2 for 𝑘 = 7: 
(𝐶1\𝐶7) = 6, (𝐶2\𝐶7) = 14, (𝐶3\𝐶7) = 10,
(𝐶4\𝐶7) = 20,   (𝐶5\𝐶7) = 16 omit 𝐶6 (each m-

d-c-s obtained from 𝐶6 is redundant); check ER for 

𝑘 = 1 
 

𝑗 𝐶 𝑏 𝐶+ (𝐶+) 
[𝐶+

∪ 𝜇[𝐶𝑘\𝐶+]] 
𝐷 = 𝐶𝑘

\𝐶+ 

0  4 {4} 4 9 Not 

m-d-c-s 

0  5 {5} 5 9 Not 

m-d-c-s 

0  3 {3}* 7 11 {4,5,2}** 

0  2 {2}* 9 11 (L. 5.4) {4,5,3}** 

1 {4} 5 {4,5}* 9 16 {3,2}* 
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Summing up, the following min-d-cut-sets (𝑑 = 10) 

in the network from Figure 1 have been found by 

Algorithms 1 and 2: {6}, {5,4}, {8,11}, {8,4}, {11,4}, 
{1}, {11,9}, {10,9}, {10,11}, {4,7,10}, {7,11}, {3,2}, 
{5,7,9}, {7,8,9}. They are listed in the same order in 

which they have been generated. 

 

Table 6. Output of Algorithm 2 for 𝑘 = 8: 
(𝐶1\𝐶8) = 4, (𝐶2\𝐶8) = 18, (𝐶3\𝐶8) = 19,
(𝐶4\𝐶8) = 11,   (𝐶5\𝐶8) = 15, (𝐶7\𝐶8) = 20 

omit 𝐶6; check ER for 𝑘 = 1 
 

𝑗 𝐶 𝑏 𝐶+ (𝐶+) 
[𝐶+

∪ 𝜇[𝐶𝑘\𝐶+]] 
𝐷 = 𝐶𝑘

\𝐶+ 

0  5 {5}* 5 10 {7,6,9}** 

0  7 {7}* 5 10 (L.5.4) {5,6,9}** 

0  6 {6}* 6 10 (L.5.4) {5,7,9}* 

0  9 {9}* 9 10 (L.5.4) {4,5,3}** 

 

Table 7. Output of Algorithm 2 for 𝑘 = 9: 
(𝐶1\𝐶9) = 15, (𝐶2\𝐶9) = 4, (𝐶3\𝐶9) = 19,
(𝐶4\𝐶9) = 5,   (𝐶5\𝐶9) = 9, (𝐶7\𝐶9) = 25,
(𝐶8\𝐶9) = 11 omit 𝐶6; check ER for 𝑘 = 2,4,5 
 

𝑗 𝐶 𝑏 𝐶+ (𝐶+) 
[𝐶+

∪ 𝜇[𝐶𝑘\𝐶+]] 
𝐷 = 𝐶𝑘

\𝐶+ 

0  7 {7}* 5 11 {11,8,9}** 

0  11 {11}* 6 11 (L.5.4) {7,8,9}* 

0  8 {8}* 8 11 (L.5.4) {7,11,9}** 

0  9 {9}* 9 11 (L.5.4) {7,11,8}** 

 

Table 8. Output of Algorithm 2 for 𝑘 = 10: 
(𝐶1\𝐶10) = 4, (𝐶2\𝐶10) = 10,  
(𝐶3\𝐶10) = 19,(𝐶4\𝐶10) = 6,  
(𝐶5\𝐶10) = 9, (𝐶7\𝐶10) = 20, 
(𝐶8\𝐶10) = 5,(𝐶9\𝐶10) = 11 omit 𝐶6; check ER 

for 𝑘 = 1,4,5,8 
 

𝑗 𝐶 𝑏 𝐶+ (𝐶+) 

[𝐶+

∪ 𝜇[𝐶𝑘

\𝐶+]] 
𝐷 = 𝐶𝑘\𝐶+ 

0  5 {5}* 5 10 {10,6,8,9}** 

0  10 {10}* 5 10 (L.5.4) {5,6,8,9}** 

0  6 {6}* 6 10 (L.5.4) {5,10,8,9}** 

0  8 {8}* 8 10 (L.5.4) {5,10,6,9}** 

0  9 {9}* 9 10 (L.5.4) {5,10,6,8}** 

Table 9. Output of Algorithm 2 for 𝑘 = 11: 

(𝐶1\𝐶11) = 10, (𝐶2\𝐶11) = 18,  
(𝐶3\𝐶11) = 10, (𝐶4\𝐶11) = 16,  
(𝐶5\𝐶11) = 15, (𝐶7\𝐶11) = 4,  
(𝐶8\𝐶11) = 6, (𝐶9\𝐶11) = 14,  omit 𝐶6 and 𝐶10 

(each m-d-c-s obtained therefrom is redundant) 

check ER for 𝑘 = 7,8. 
 

𝑗 𝐶 𝑏 𝐶+ (𝐶+) 
[𝐶+

∪ 𝜇[𝐶𝑘\𝐶+]] 
𝐷 = 𝐶𝑘

\𝐶+ 

0  5 {5}* 5 10 {7,3,2,9}** 

0  7 {7}* 5 10 (L.5.4) {5,3,2,9}** 

0  3 {3}* 7 10 (L.5.4) {5,7,2,9}** 

0  2 {2}* 9 10 (L.5.4) {5,7,3,9}** 

0  9 {9}* 9 10 (L.5.4) {5,7,3,2}** 
 

𝑘 = 12, 13: each m-d-c-s obtained from 𝐶12 or 𝐶13 is 

redundant (Lemma 3.5). 
Output of Algorithm 2 for 𝑘 = 12, 13: none. 

 

Table 10. Output of Algorithm 2 for 𝑘 = 14: 

(𝐶1\𝐶14) = 10, (𝐶2\𝐶14) = 10,  
(𝐶3\𝐶14) = 10, (𝐶4\𝐶14) = 6,   
(𝐶5\𝐶14) = 15, (𝐶7\𝐶14) = 4,  
(𝐶8\𝐶14) = 11, (𝐶9\𝐶14) = 11,  omit 𝐶6, 𝐶10, 

𝐶12, 𝐶13 (each m-d-c-s obtained therefrom is  

redundant) check ER for 𝑘 = 4, 7. 
 

𝑗 𝐶 𝑏 𝐶+ (𝐶+) 

[𝐶+

∪ 𝜇[𝐶𝑘

\𝐶+]] 
𝐷 = 𝐶𝑘\𝐶+ 

0  5 {5}* 5 10 {10,3,8,2,9}** 

0  10 {10}* 5 
10 

(L.5.4) 
{5,3,8,2,9}** 

0  3 {3}* 7 
10 

(L.5.4) 
{5,10,8,2,9}** 

0  8 {8}* 8 
10 

(L.5.4) 
{5,10,3,2,9}** 

0  2 {2}* 9 
10 

(L.5.4) 
{5,10,3,8,9}** 

0  9 {9}* 9 
10 

(L.5.4) 
{5,10,3,8,2}** 

 

7. Numerical complexity issue 
 

In this section a formula for the presented method’s 

numerical complexity will be derived.  
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Let us introduce the following additional notation: 

 𝐽∗(𝐶) - the smallest 𝑗 such that: 

 

   𝜑(𝑐1)+. . . +𝜑(𝑐𝑗) > Ψ𝑚𝑎𝑥(𝐺) - 𝑑, 

 

where 𝑐1, 𝑐2, . .. are the components of 𝐶 orde

red according to non-decreasing capacities, i.

e.  

 

   𝜑(𝑐1) ≤ 𝜑(𝑐2) ≤. ..; 
 

 𝑗∗(𝐶) - the smallest 𝑗 such that 

 

   𝜑(𝑐1)+. . . +𝜑(𝑐𝑗) > Ψ𝑚𝑎𝑥(𝐺) - 𝑑, 

 

where 𝑐1, 𝑐2, . .. are the components of 𝐶  

ordered according to non-decreasing  

capacities, i.e.  

 

   𝜑(𝑐1) ≥ 𝜑(𝑐2) ≥ ⋯ . 

 

Lemma 6.1 

The computational complexity of the presented 

method, expressed in the “big O” notation, is  

approximately equal to 

 

   𝑂 [∑ max
𝑗∗(𝐶𝑘)≤𝑗≤𝐽∗(𝐶𝑘)

(𝑐𝑎𝑟𝑑(𝐶𝑘)
𝑗

)𝑚
𝑘=1 ]. (37) 

 

Proof: Let us note that a min-d-cut-set generated 

from 𝐶𝑘 has 𝐽∗(𝐶𝑘) or 𝑗∗(𝐶𝑘) components if it  

consists of the components with the smallest or  

largest capacities respectively. It holds that 𝐽∗(𝐶𝑘) ≥
𝑗∗(𝐶𝑘). In consequence, any min-d-cut set generated 

from 𝐶𝑘 has between 𝑗∗(𝐶𝑘) and 𝐽∗(𝐶𝑘) components. 

Thus the number of min-d-cut-sets generated from 

𝐶𝑘 does not exceed the maximum number of  

𝑗-element subsets of a set whose number of elements 

equals 𝑐𝑎𝑟𝑑(𝐶𝑘), the maximum being taken over 

𝑗∗(𝐶𝑘) ≤ 𝑗 ≤ 𝐽∗(𝐶𝑘). In view of the fact that only a 

very small number of non-minimal d-cut-sets is gen-

erated from each 𝐶𝑘, 𝑘 = 1, . . . , 𝑚 (due to different 

treatment of the cases 𝛷(𝐶𝑘) < 2𝑑 and 𝛷(𝐶𝑘) ≥
2𝑑), we can approximate the method’s complexity 

by the total number of generated min-d-cut-sets, 

which, as follows from the first part of the proof, 

does not exceed (37).  

 

8. Result comparison with other methods 
 

The main difference between the two methods  

consists in dissimilar ways in which they address  

the external redundancy problem. The authors of [2] 

claim that they avoid generating externally redundant 

d-cut-sets by using a special decomposition  

technique that modifies 𝐿𝑡 (the list of sets from 

which min-d-cut-sets are generated) when the  

generation algorithm passes to the next set on 𝐿𝑡. A 

short description of their method is given below.  

In the beginning 𝐿𝑡 is composed of all min-cut-sets, 

and to each 𝐶 ∈ 𝐿𝑡 a value 𝑤(𝐶) is assigned; 𝑤(𝐶) is 

called the required capacity of 𝐶 and is initially equal 

to 𝑑. The following operations are repeated in a loop: 

Each subset 𝐷 of 𝐶1 (the first set on 𝐿𝑡), such that 

(𝐶1\𝐷) < 𝑤(𝐶1), is added to 𝐿𝑑 (the list of min-d-

cut-sets), then 𝐶1 is deleted from 𝐿𝑡. If 𝐿𝑡 is now 

empty, the algorithm stops, otherwise each recently 

generated 𝐷 is checked for inclusion in each 𝐶 on 𝐿𝑡. 

If 𝐷 = {𝑑1, . . . , 𝑑|𝐷|} ⊆ 𝐶 then 𝐶 is decomposed  

into |𝐷| sets 𝐶\{𝑑1},…, 𝐶\{𝑑|𝐷|} whose required 

capacities are computed as follows: 

 

   𝑤(𝐶\{𝑑𝑖}) = 𝑤(𝐶) − 𝜑(𝑑𝑖), 𝑖 = 1, . . . , 𝑐𝑎𝑟𝑑(𝐷).  

 

Then 𝐶 is substituted on 𝐿𝑡 by those sets 𝐶\{𝑑1} for 

which 𝑤(𝐶\{𝑑𝑖}) > 0.  

For greater clarity, let us write down the above  

procedure in a pseudocode as the following  

algorithm: 

 

Algorithm 3 

1. Put Ld =  and populate Lt with min--cut-sets 

ordered by increasing number of components 

2. Put on Ld,aux each minimal subset D of C1, such 

that (C1\D) < w(C1) 

3. Augment Ld with Ld,aux and delete C1 from Lt 

4. If Lt is empty, stop  

5. For each set D on Ld,aux do 

      For each set C on Lt do 

        If D  C then substitute C with those C\{di} 

          for which w(C) – (di) > 0, i = 1,2,…, card(D) 

6. Skip to 2 

 

Remarks: 𝐿𝑑,𝑎𝑢𝑥 is the list of min-d-cut-sets generat-

ed from one set on 𝐿𝑡, and 𝐿𝑑 is the list of min-d-cut-

sets generated up to the current step. When the  

algorithm stops, 𝐿𝑑 contains all min-d-cut-sets. A 

subset 𝐷 fulfilling the condition in step 2 is minimal 

if (𝐶1\𝐷′) < 𝑤(𝐶1) for each 𝐷′ ⊂ 𝐷. (𝐶\𝐷) 

must be less than 𝑤(𝐶), so that 𝐷 can be a d-cut set 

generated from 𝐶.  

To facilitate the comparison of Algorithm 3 with 

Algorithm 1 and 2, the detailed trace of Algorithm 3 

for the network in Figure 1 is now presented. For 

each 𝐶 on 𝐿𝑡, such that 𝑤(𝐶) < 𝑑 = 10, the value 

𝑤(𝐶) is given next to 𝐶 as a superscript. If 

𝑤(𝐶) = 10 then 𝐶 is not superscripted 

 

   𝐿𝑑 =, 
 
   𝐿𝑡 ={1,2}, {4,5,6}, {4,8,11}, {9,10,11}, {1,3,6},  
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   {4,7,10,11}, {2,3,4,5}, {5,6,7,9}, {7,8,9,11},  
   {5,6,8,9,10}, {2,3,5,7,9}, {1,3,5,8,11},  
   {1,3,5,7,10,11}, {2,3,5,8,9,10}. 
 
Generate min-d-cut-sets from {1,2}: 
 
   𝐿𝑑,𝑎𝑢𝑥 = {1}, 𝐿𝑑 = 𝐿𝑑 ∪ 𝐿𝑑,𝑎𝑢𝑥, 𝐿𝑡 = 𝐿𝑡\{1,2};  
 

Execute step 5 (13 checks and 3 decompositions); 

 

   𝐿𝑡 = {4,5,6}, {4,8,11}, {9,10,11}, {3,6}(0), 
   {4,7,10,11}, {2,3,4,5}, {5,6,7,9}, {7,8,9,11}, 
   {5,6,8,9,10}, {2,3,5,7,9}, {3,5,8,11}(0), 
   {3,5,7,10,11}(0), 
 

   {2,3,5,8,9,10} = {4,5,6}, {4,8,11}, {9,10,11},  
   {4,7,10,11}, {2,3,4,5}, {5,6,7,9}, {7,8,9,11}, 
   {5,6,8,9,10}, {2,3,5,7,9}, {2,3,5,8,9,10}. 
 

Generate min-d-cut-sets from {4,5,6}: 

 

   𝐿𝑑,𝑎𝑢𝑥 = {6}, {4,5}, 𝐿𝑑 = 𝐿𝑑 ∪ 𝐿𝑑,𝑎𝑢𝑥, 

 

   𝐿𝑡 = 𝐿𝑡\{4,5,6};  
 

Execute step 5 (18 checks and 4 decompositions); 

 

   𝐿𝑡 ={4,8,11}, {9,10,11}, {4,7,10,11}, {2,3,5}(6), 
   {2,3,4}(5), {5,7,9}(4), {7,8,9,11}, {5,8,9,10}(4),  
   {2,3,5,7,9}, {2,3,5,8,9,10}. 
 

Generate min-d-cut-sets from {4,8,11}: 
 

   𝐿𝑑,𝑎𝑢𝑥 ={4,8}, {4,11}, {8,11}, 𝐿𝑑 = 𝐿𝑑 ∪ 𝐿𝑑,𝑎𝑢𝑥, 

 

   𝐿𝑡 = 𝐿𝑡\{4,8,11};  
 

Execute step 5 (27 checks and 4 decompositions); 

 

   𝐿𝑡 ={9,10,11}, {7,10,11}(6), {4,7,10}(4), {2,3,5}(6), 
   {2,3,4}(5), {5,7,9}(4), {7,9,11}(2), {7,8,9}(4),  
   {5,8,9,10}(4), {2,3,5,7,9}, {2,3,5,8,9,10}. 
 

Generate min-d-cut-sets from {9,10,11}: 
 

   𝐿𝑑,𝑎𝑢𝑥 ={9,10}, {9,11}, {10,11}, 

 

   𝐿𝑑 = 𝐿𝑑 ∪ 𝐿𝑑,𝑎𝑢𝑥, 𝐿𝑡 = 𝐿𝑡\{9,10,11}; 
 

Execute step 5 (30 checks and 8 decompositions); 

 

   𝐿𝑡 ={7,11}(1), {7,10}(0), {4,7,10}(4), {2,3,5}(6),  
   {2,3,4}(5), {5,7,9}(4), {7,11}(–7), {7,9}(–4), {7,8,9}(4),  
   {5,8,10}(–5), {5,8,9}(–1), {2,3,5,7,9}, {2,3,5,8,10}(1),  
 

   {2,3,5,8,9}(5) = {7,11}(1), {4,7,10}(4), {2,3,5}(6),  
   {2,3,4}(5), {5,7,9}(4), {7,8,9}(4), {2,3,5,7,9}, 
   {2,3,5,8,10}(1), {2,3,5,8,9}(5). 
 
Generate min-d-cut-sets from {7,11}(1) : 

 

   𝐿𝑑,𝑎𝑢𝑥 ={7,11}, 𝐿𝑑 = 𝐿𝑑 ∪ 𝐿𝑑,𝑎𝑢𝑥, 

 

   𝐿𝑡 = 𝐿𝑡\{7,11}(1);  
 

Execute step 5 (8 checks and 0 decompositions); 

 

   𝐿𝑡 ={4,7,10}(4), {2,3,5}(6), {2,3,4}(5), {5,7,9}(4),  
   {7,8,9}(4), {2,3,5,7,9}, {2,3,5,8,10}(1), {2,3,5,8,9}(5). 
 
Generate min-d-cut-sets from {4,7,10}(4) : 
 
   𝐿𝑑,𝑎𝑢𝑥 ={4,7,10}, 𝐿𝑑 = 𝐿𝑑 ∪ 𝐿𝑑,𝑎𝑢𝑥, 

 

   𝐿𝑡 = 𝐿𝑡\{4,7,10}(4);  
 

Execute step 5 (7 checks and 0 decompositions); 

 

   𝐿𝑡 ={2,3,5}(6), {2,3,4}(5), {5,7,9}(4), {7,8,9}(4),  
   {2,3,5,7,9}, {2,3,5,8,10}(1), {2,3,5,8,9}(5). 
 

Generate min-d-cut-sets from {2,3,5}(6) : 

 

   𝐿𝑑,𝑎𝑢𝑥 ={2,3}, 𝐿𝑑 = 𝐿𝑑 ∪ 𝐿𝑑,𝑎𝑢𝑥, 

 

   𝐿𝑡 = 𝐿𝑡\{2,3,5}(6);  
 

Execute step 5 (6 checks and 8 decompositions); 

 

   𝐿𝑡 ={3,4}(–4), {2,4}(–2), {5,7,9}(4), {7,8,9}(4),  
   {3,5,7,9}(1), {2,5,7,9}(3), {3,5,8,10}(–8), 
   {2,5,8,10}(–6), {3,5,8,9}(–4), 
 

   {2,5,8,9}(–1) = {5,7,9}(4), {7,8,9}(4), {3,5,7,9}(1),  
   {2,5,7,9}(3). 
 

Generate min-d-cut-sets from {5,7,9}(4) : 

 

   𝐿𝑑,𝑎𝑢𝑥 ={5,7,9}, 𝐿𝑑 = 𝐿𝑑 ∪ 𝐿𝑑,𝑎𝑢𝑥, 

 

   𝐿𝑡 = 𝐿𝑡\{5,7,9}(4);  
 

Execute step 5 (3 checks and 6 decompositions) 

 

   𝐿𝑡 ={7,8,9}(4), {3,7,9}(–4), {3,5,9}(–4), {3,5,7}(–8),  
   {2,7,9}(–2), {2,5,9}(–2), {2,5,7}(–6) = {7,8,9}(4). 
 

Generate min-d-cut-sets from {7,8,9}(4) : 

 

   𝐿𝑑,𝑎𝑢𝑥 ={7,8,9}, 𝐿𝑑 = 𝐿𝑑 ∪ 𝐿𝑑,𝑎𝑢𝑥, 
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   𝐿𝑡 = 𝐿𝑡\{7,8,9}(4) =  (𝐿𝑡 is empty); 

 

   𝐿𝑑 ={1}, {6}, {4,5}, {4,8}, {4,11}, {8,11}, 
   {9,10}, {9,11}, {10,11}, {7,11}, {4,7,10}, 
   {2,3}, {5,7,9}, {7,8,9}. 
 

The comparison of Algorithm 3 with Algorithm 1 or 

2 leads to the following conclusions. 

1) The number of cycles of the main loop in the 

combined Algorithm 1 and 2 does not exceed m (the 

number of min-cut-sets), but is unpredictable in  

Algorithm 3 due to variable length of 𝐿𝑡, and may be 

greater than m.  

An ER check in Algorithm 1 or 2 is numerically 

equivalent to an inclusion check or decomposition 

operation in Algorithm 3, but the number of ER 

checks in Algorithm 1 and 2 can be significantly 

smaller than the number of inclusion checks and 

decompositions in Algorithm 3. Each m-d-c-s  

candidate found by Algorithm 1 or 2 is only  

compared to selected min--cut-sets preceding the 

one from which this candidate is generated (see  

corollary to Lemma 3.4). If applied to the network in 

Figure 1, Algorithm 1 makes no ER checks, and 

Algorithm 2 makes 64 ER checks (3 in step 5,  

3 in step 7, 4 in step 8, 12 in step 9, 20 in step 10,  

10 in step 11, and 12 in step 14). In turn, in  

Algorithm 3 each D on 𝐿𝑑,𝑎𝑢𝑥 is checked for  

inclusion in each set on the current 𝐿𝑡, which 

amounts to 112 checks and 33 decompositions if 

Algorithm 3 is applied to the same network. This 

difference between Algorithm 3 and Algorithm 1  

and 2 is likely to grow with the network size.  

2) The computational effort afforded in Algorithm 1 

or 2 to obtain m-d-c-s candidates from one min-cut-

set is comparable to that required to extract 𝐿𝑑,𝑎𝑢𝑥 

from one set on 𝐿𝑡. (𝐿𝑑,𝑎𝑢𝑥 is obtained using the 

decomposition technique to prevent generating  

internally redundant d-cut-sets). In turn, the  

technique of generating m-d-c-s candidates, based  

on Lemmas 4.1–4.4 and 5.1–5.4, and on capacity- 

based ordering of min-cut-sets and their  

elements, minimizes the number of non-d-cut-sets  

(Algorithm 1) or internally redundant d-cut-sets (Al-

gorithm 2) generated prior to finding a candidate. It 

also avoids generating internally redundant d-cut-sets 

in Algorithm 1 or allows for instantaneous internal 

redundancy check in Algorithm 2. In [2] the min-cut-

sets are initially ordered by increasing number of 

components, and their elements are ordered by  

increasing indexes, thus the advantages of capacity-

based ordering are overlooked. 

3) Last but not least, Algorithms 1 and 2, based on 

Theorem 2, guarantee that no ER redundant d-cut-

sets are generated. It should be noted that the authors 

of [2] in the 2-nd paragraph of Section II and the last 

paragraph of Section V admit that their method can 

generate a certain number of ER d-cut-sets (although 

no such sets were generated by Algorithm 3 for the 

given example).   

Algorithms 1 and 2 are only compared with  

Algorithm 3 for two reasons. One – very few meth-

ods for min-d-cut-sets enumeration can be found in 

the literature. Second – the authors of [2] claimed to 

improve the results of [5] and proved their method to 

be very efficient. Also, it is difficult to compare the 

results presented here with those of [9], because  

networks with multi-state links (not two-state ones) 

are considered there. 

 

9. Conclusion  
 

As shown in Section 7, the new method of  

enumerating all min-d-cut-sets in a flow network 

presented in this chapter is competitive in  

comparison with the analogous methods described in 

the relevant literature, particularly in [2] that  

improves the results of [5].  

Let us note that, using Algorithm 1 or 2, it is possible 

to generate m-d-c-s candidates and check them  

for non-redundancy, in parallel for several successive 

k. This is because, due to Condition 3 in Theorem 2, 

non-redundancy check involves the given min-cut-

sets 𝐶𝑗, 𝑗 < 𝑘, rather than min-d-cut-sets obtained 

from 𝐶𝑗, 𝑗 < 𝑘. Thus, the computing time can  

be significantly reduced compared to generating  

min-d-cut-sets sequentially for 𝑘 = 1, … , 𝑚. 

Although the provided example suggests that  

the proposed method can only be used for networks 

with undirected links and failure-free nodes, this  

is not the case. Since the Ford-Fulkerson theorem 

also holds for networks with directed links and  

failing nodes with limited capacities, so do all the 

lemmas and theorems from Sections 3–5. See [7] and 

[10] for algorithms that find min-cut-sets in such 

networks. Moreover, the method can be generalized 

to the multi-source and/or multi-sink case, but this 

would require appropriate redefining of min--cut-

sets, which will be a topic of further research.  

It should be noted that a similar issue has been  

addressed in [3]. 

Another topic for future research is the adaptation  

of Algorithms 1 and 2 to networks with multi-state 

components. This is not a simple task, because  

in the multi-state case a d-cut-set is not defined  

as a subset of components, but as a vector of  

reduced capacities of all components in a  

network. For example, (10,9,7,4,5,6,5,8,9,5,6) and 

(10,9,7,3,3,3,5,8,9,5,6) are vectors of maximum  

and reduced capacities for the network in Figure 1 

(capacities of components 4, 5 and 6 are reduced  

to 3). The Ford-Fulkerson theorem allows to easily 
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check that the second vector reduces Ψ𝑚𝑎𝑥(𝐺) from 

15 to 9, i.e. it is a d-cut-set if 𝑑 ≥ 10. Although  

it seems possible to formulate and prove lemmas  

and theorems analogous to those from Section 3,  

the lemmas from Sections 4 and 5 may not have  

direct counterparts. In any case, the numerical  

complexity of the method adapted to multi-state 

components will be significantly higher than that 

given by (37).  
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