PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the Feasibility of Modified Chitosan Beads for the Adsorption of Nitrate from an Aqueous Solution

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the current work was to investigate the effectiveness and mechanism of nitrate removal from an aqueous solution by adsorption using metal (Zr4+)loaded chitosan and Bentonite beads (Cs-Bn-Zr). The study was carried out in a batch system, and the effect of the critical factors on the adsorption performance, such as contact time, initial nitrate anion concentration, and adsorbent dosage, were investigated. In addition, the adsorption equilibrium models of the Langmuir, Freundlich, and Temkin isotherms were evaluated. The modified adsorbent was characterized by Fourier transform infrared spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), and analysis with an energy-dispersive X-ray analyzer (EDX). The results demonstrated that at 0.2 g of CS-Bn-Zr adsorbent with an initial concentration of 50 mg/l and a contact time of 120 minutes, the maximum removal of nitrate ions was found to be 97.28%. The result demonstrated that the maximum adsorption capacity of nitrite ions on the manufactured bead was 110.46 mg/g. The Freundlich model was shown to be the most effective for the adsorbate of nitrate. The pseudo–first-order model fits the adsorption kinetic data well.
Słowa kluczowe
Rocznik
Strony
265--278
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Department of Chemical Engineering, College of Engineering, University of Baghdad, Iraq
  • Department of Chemical Engineering, College of Engineering, University of Baghdad, Iraq
Bibliografia
  • 1. Afkhami A. 2003. Adsorption and electrosorption of nitrate and nitrite on high-area carbon cloth: An approach to purification of water and waste-water samples. Carbon., 41, 1320–1322.
  • 2. Ahmed M.J., Hameed B.H., Hummadi E.H. 2020. Review on recent progress in chitosan/chitin-carbonaceous material composites for the adsorption of water pollutants. Carbohydrate Polymers., 247, 116690.
  • 3. Azlan K.,Wan Saime W.N., Lai Ken L. 2009. Chitosan and chemically modified chitosan beads for acid dyes sorption. Journal of Environmental Sciences., 21, 296–302.
  • 4. Bae B.U., Jung Y.H., Han W.W., Shin H.S. 2002. Improved brine recycling during nitrate removal using ion exchange. Water Research., 36, 3330–3340.
  • 5. Banu H.T., Karthikeyan P., Meenakshi S. 2019. Zr4+ ions embedded chitosan-soya bean husk activated bio-char composite beads for the recovery of nitrate and phosphate ions from aqueous solution. International Journal of Biological Macromolecules., 130, 573–583.
  • 6. Choudhary V.R.,Vaidya S.H. 1982. Adsorption of Copper Nitrate From Solution on Silica Gel. Journal of chemical technology and biotechnology, 32, 888–892.
  • 7. Daneshvar E., Santhosh C., Antikainen E., Bhatnagar A. 2018. Microalgal growth and nitrate removal efficiency in different cultivation conditions: Effect of macro and micronutrients and salinity. Journal of Environmental Chemical Engineering, 6, 1848–1854.
  • 8. Elanchezhiyan S.S., Sivasurian N., Meenakshi S. 2016. Enhancement of oil recovery using zirconium-chitosan hybrid composite by adsorptive method. Carbohydrate polymers, 145, 103–113.
  • 9. Ghadiri S.K., Nasseri S., Nabizadeh R., Khoobi M., Nazmara S., Mahvi A.H. 2017. Adsorption of nitrate onto anionic bio-graphene nanosheet from aqueous solutions: Isotherm and kinetic study. Journal of Molecular Liquids, 242, 1111–1117.
  • 10. Golden P.J., Weinstein R. 1998. Treatment of high-risk, refractory acquired methemoglobinemia with automated red blood cell exchange. Journal of clinical apheresis, 13, 28–31.
  • 11. Hamid S.A., Shahadat M., Ismail S. 2017. Development of cost effective bentonite adsorbent coating for the removal of organic pollutant. Applied Clay Science, 149, 79–86.
  • 12. Hammadi A., Shakir I. 2019. Adsorption Behavior of Light Naphtha Components on Zeolite (5A) and Activated Carbon. Iraqi Journal of Chemical and Petroleum Engineering, 20, 27–33.
  • 13. Hasmath Farzana M., Meenakshi S. 2015. Photocatalytic aptitude of titanium dioxide impregnated chitosan beads for the reduction of Cr(VI). International Journal of Biological Macromolecules, 72, 1265–1271.
  • 14. Herschy R.W. 2012. Water quality for drinking: WHO guidelines. Encyclopedia of Earth Sciences Series, 876–883.
  • 15. Hu H.Y., Goto N., Fujie K. 2001. Effect of ph on the reduction of nitrite in water by metallic iron. Water Research, 35, 2789–2793.
  • 16. Hummadi K.K. 2021. Optimal Operating Conditions for Adsorption of Heavy Metals from an Aqueous Solution by an Agriculture Waste. Iraqi Journal of Chemical and Petroleum Engineering, 22, 27–35.
  • 17. Jiang H., Chen P., Luo S., Tu X., Cao Q., Shu M. 2013. Synthesis of novel nanocomposite Fe3O4/ZrO2/chitosan and its application for removal of nitrate and phosphate. Applied Surface Science, 284, 942–949.
  • 18. Karthikeyan P., Banu H.A.T., Meenakshi S. 2019a. Synthesis and characterization of metal loaded chitosan-alginate biopolymeric hybrid beads for the efficient removal of phosphate and nitrate ions from aqueous solution. International journal of biological macromolecules, 130, 407–418.
  • 19. Karthikeyan P., Banu H.A.T., Meenakshi S. 2019b. Removal of phosphate and nitrate ions from aqueous solution using La(3+) incorporated chitosan biopolymeric matrix membrane. International journal of biological macromolecules, 124, 492–504.
  • 20. Karthikeyan P., Banu H.A.T., Meenakshi S. 2019c. Synthesis and characterization of metal loaded chitosan-alginate biopolymeric hybrid beads for the efficient removal of phosphate and nitrate ions from aqueous solution. International Journal of Biological Macromolecules, 130, 407–418.
  • 21. Keshvardoostchokami M., Majidi M., Zamani A., Liu B. 2021. A review on the use of chitosan and chitosan derivatives as the bio-adsorbents for the water treatment: Removal of nitrogen-containing pollutants. Carbohydrate Polymers., 273, 118625.
  • 22. Kumar I.A., Viswanathan N. 2017. Fabrication of metal ions cross-linked alginate assisted biocomposite beads for selective phosphate removal. Journal of Environmental Chemical Engineering, 5, 1438–1446.
  • 23. Kyzas G.Z., Bikiaris D.N. 2015. Recent modifications of chitosan for adsorption applications: A critical and systematic review. Marine Drugs., 13, 312–337.
  • 24. Li M., Lu B., Ke Q.F., Guo Y.J., Guo Y.P. 2017. Synergetic effect between adsorption and photodegradation on nanostructured TiO2/activated carbon fiber felt porous composites for toluene removal. Journal of Hazardous Materials, 333, 88–98.
  • 25. Liu L., Ji M., Wang F. 2018. Adsorption of Nitrate onto ZnCl2-Modified Coconut Granular Activated Carbon: Kinetics, Characteristics, and Adsorption Dynamics. (Majewski, P., Ed.)Advances in Materials Science and Engineering, 2018, 1939032.
  • 26. Liu Q., Hu P., Wang J., Zhang L.,Huang R., 2016. Phosphate adsorption from aqueous solutions by Zirconium (IV) loaded cross-linked chitosan particles. Journal of the Taiwan Institute of Chemical Engineers., 59, 311–319.
  • 27. Nur T., Shim W.G., Loganathan P., Vigneswaran S., Kandasamy J. 2015. Nitrate removal using Purolite A520E ion exchange resin: batch and fixed-bed column adsorption modelling. International Journal of Environmental Science and Technology, 12, 1311–1320.
  • 28. Pavithra S., Thandapani G.S., Sugashini P., Sudha P.N., Alkhamis H.H., Alrefaei A.F., Almutairi M.H. 2021. Batch adsorption studies on surface tailored chitosan/orange peel hydrogel composite for the removal of Cr(VI) and Cu(II) ions from synthetic wastewater. Chemosphere, 271, 129415.
  • 29. Purbasari A., Ariyanti D., Sumardiono S., Khairunnisa K., Sidharta T. 2022. Adsorption Kinetics and Isotherms of Cu(II) and Fe(II) Ions from Aqueous Solutions by Fly Ash-Based Geopolymer. Chemistry & Chemical Technology, 16, 169–176.
  • 30. Radhi B.D., Mohammed W.T. 2021. Novel nanocomposite adsorbent for desulfurization of 4,6-dimethyldibenzothiophene from model fuel. Materials Today: Proceedings, 42, 2880–2886.
  • 31. Rajeswari A., Amalraj A., Pius A. 2015. Removal of phosphate using chitosan-polymer composites. Journal of Environmental Chemical Engineering, 3, 2331–2341.
  • 32. Raval H.D., Rana P.S., Maiti S. 2015. A novel high-flux, thin-film composite reverse osmosis membrane modified by chitosan for advanced water treatment. RSC Advances., 5, 6687–6694.
  • 33. Rice E.W., Bridgewater L., Association A.P H., Association A.W.W., Federation W.E. 2012. Standard Methods for the Examination of Water and Wastewater. Standard Methods for the Examination of Water and Wastewater. American Public Health Association.
  • 34. Saheed I.O., Oh W.D., Suah F.B.M. 2021. Chitosan modifications for adsorption of pollutants – A review. Journal of Hazardous Materials, 408, 124889.
  • 35. Sanyangare F. 2016. Simulation of the Adsorptive Desulphurisation of Diesel Fuel. University of the Witwatersrand.
  • 36. Shavandi M.A., Haddadian Z., Ismail M.H.S., Abdullah N., Abidin Z.Z. 2012. Removal of Fe (III), Mn (II) and Zn (II) from palm oil mill effluent (POME) by natural zeolite. Journal of the Taiwan institute of chemical engineers, 43, 750–759.
  • 37. Sowmya A., Meenakshi S. 2014. Zr(IV) loaded cross-linked chitosan beads with enhanced surface area for the removal of nitrate and phosphate. International Journal of Biological Macromolecules, 69, 336–343.
  • 38. Sulaymon A.H., Alhayali K.W., Waadallah A.A. 2010. Diffusion kinetics of Furfural adsorption onto Activated Carbon. Iraqi Journal of Chemical and Petroleum Engineering, 11, 21–27.
  • 39. Vijayaraghavan K., Padmesh T.V.N., Palanivelu K.,Velan M. 2006. Biosorption of nickel (II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. Journal of hazardous materials, 133, 304–308.
  • 40. Wang Y., Gao B.Y., Yue W.W., Yue Q.Y. 2007. Adsorption kinetics of nitrate from aqueous solutions onto modified wheat residue. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 308, 1–5.
  • 41. Weber T.W., Chakravorti R.K. 1974. Pore and solid diffusion models for fixed‐bed adsorbers. AIChE Journal, 20, 228–238.
  • 42. Wu P.X., Liao Z.W., Zhang H.F.,Guo J.G. 2001. Adsorption of phenol on inorganic-organic pillared montmorillonite in polluted water. Environment International, 26, 401–407.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c96d207f-4321-474d-b71e-821055e355b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.