PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Positive extremal values and solutions of the exponential equations with application to automatics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, maximal values xe(τ) of the solutions x(t) of the linear differential equations excited by the Dirac delta function are determined. There are obtained the analytical solutions of the equations and also the maximal positive values of these solutions. The obtained sufficient conditions of the positivity of these solutions are defined by the Theorems. There are also formulated the necessary conditions of the positivity of these solutions. The analytical formulae enable the design of the system with prescribed properties.
Rocznik
Strony
585--591
Opis fizyczny
Bibliogr. 12 poz., rys.
Twórcy
autor
  • AGH University of Science and Technology, Department of Automatics and Robotics, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Department of Automatics and Robotics, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] J. Osiowski, An outline of operator calculus. Theory and applications in electrical engineering, WNT, Warszawa, 1965 [in Polish].
  • [2] S. Białas, H. Górecki, and M. Zaczyk, “Extremal properties of the linear dynamic systems controlled by Dirac’s impulse”, Int. J. Appl. Math. Comput. Sci. 30 (1), 75–81 (2020).
  • [3] H. Górecki, and M. Zaczyk, “Design of systems with extremal dynamic properties”, Bull. Pol. Ac.: Tech. 61 (3), 563–567 (2013).
  • [4] H. Górecki, Optimization and Control of Dynamic Systems, Springer, 2018.
  • [5] L. Farina, and S. Rinaldi, Positive Linear Systems. Theory and Application, J. Wiley, New York, 2000.
  • [6] T. Kaczorek, Positive 1D and 2D Systems, Springer-Verlag, London, 2002.
  • [7] T. Kaczorek, “A new method for determination of positive realizations of linear continuous-time systems”, Bull. Pol. Ac.: Tech. 66 (5), 605–611 (2018).
  • [8] T. Kaczorek, “Global stability of nonlinear feedback systems with positive descriptor linear part”, Bull. Pol. Ac.: Tech. 67 (1), 45–51 (2019).
  • [9] T. Kaczorek, “Stability of interval positive continuous-time linear systems”, Bull. Pol. Ac.: Tech. 66 (1), 31–35 (2018).
  • [10] L. Benvenuti, and L. Farina, “A tutorial on the positive realization problem”, IEEE Trans. Autom. Control 49 (5), 651–664 (2004)
  • [11] A. Rantzer, “On the Kalman-Yakubovich-Popov lemma for positive systems”, IEEE Trans. Autom. Control 61 (5), 1346–1349 (2016).
  • [12] K. Sato and A. Takeda, “Construction methods of the nearest positive system”, IEEE Control Syst. Lett. 4 (1), 97–102 (2020).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c960a159-8042-42b1-8b71-bd848fd8760c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.