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INTRODUCTION

This paper presents the results of fracture 
simulation using the user’s own implementation 
of the crack propagation criteria with user subrou-
tines in the Abaqus FEA system. This method was 
described in the previous author’s work [1]. The 
analyzed task is the propagation of the Griffi  th 
crack located in an infi nite 2D area in a quasi-brit-
tle material, subjected to a pair of uniformly dis-
tributed tensile loads. Six criteria of the fracture 
propagation angle have been programmed. The 
fracture was simulated using the extended fi nite 
element method (X-FEM) developed by Moes et 
al. [2], which is one of the popular methods of 
simulating a discrete crack in the Finite Element
Method. This method consists of modifying the 

element shape function by adding an enrichment 
function (Heavyside function), which is respon-
sible for dividing a fi nite element at any point 
without the need to modify the element mesh.

Unfortunately, this method has some draw-
backs. In the Finite Element Method, the stress 
values at the crack tip are not available, but only at 
the surrounding integration points, so the direction 
of the crack propagation calculated by the program 
is often incorrect. However, the Abaqus system al-
lows to introduce own criteria for determining the 
direction of the crack propagation using the so-
called user subroutines. The user subroutine to de-
fi ne the damage initiation criterion (UDMGINI) is 
the subroutine responsible for determining the di-
rection of the crack propagation. This subroutine, 
written in Fortran, reads the appropriate input data 
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(most often these are user-specified values and 
values read during the simulation, such as stresses, 
displacements, coordinates) and as a result, sends 
the crack propagation vector and the criterion val-
ue to the Abaqus solver. The criterion value, in the 
simplest case, is the ratio of tensile stress to tensile 
strength. If the value of the criterion exceeds 1, 
the program continues the crack using the X-FEM 
method to the next element. This algorithm is re-
peated in each iteration step of calculations.

There are few publications in the literature 
describing the crack simulation with the use of 
the UDMGINI subroutine in the Abaqus system. 
Most of the works, however, describe the crack-
ing of steel [3, 4], composites [5, 6], and poly-
mers [7]. However, no studies describe their own 
criteria in quasi-brittle materials such as concrete 
or rocks, which will be analyzed in this paper.

Griffith’s crack simulations are also an inter-
esting research topic. In the literature, there are 
publications by Yin et al. [8] or Dewapriya et al. 
[9] where the simulation of symmetrical fracture 
in graphene was performed with the use of Mo-
lecular Dynamic Simulations, or, for example, 
the work by Wang et al. [10], in which the kinked 
Griffith’s crack was analyzed using the Discrete 
Element Method. The topic of kinked crack has 
appeared in the literature for a long time [11,  
12]. In this paper, the angle of propagation of the 
Griffith’s kinked crack will be verified by com-
puter simulations using own implementations of 
the crack propagation criteria.

THEORETICAL ANALYSIS

General description of the problem

The analyzed task is Griffith’s crack shown in 
Figure 1. It is a crack located inside an infinite two-
dimensional area stretched by a pair of uniformly 
distributed loads. In the figure, the angle β is the 
angle between the initial crack and the horizontal 
axis (perpendicular to the load), and the angle α is 
the predicted angle between the initial crack line 
and the actual crack formed under load. In this sec-
tion, the relationship between the initial crack an-
gle and the fracture angle will be described. There 
are many criteria that determine the direction of 
the crack propagation. The following criteria were 
used in this study: the maximum principal stresses 
criterion, the Ottosen-Podgórski criterion, three 
criteria based on displacements around the crack 

tip, the maximum circumferential tensile stress 
(MTS) criterion, and the maximum energy release 
rate criterion (MERR) which are based on stress 
intensity factors. The listed criteria are described 
in the following subsections.

Stress-based criteria

The criterion of the maximum principal 
stresses assumes that the fracture will be guided 
in the direction in which the maximum principal 
stress (tension) at a constant radius around the 
crack tip locally reach the minimum value, which 
corresponds to the maximum value of the stress 
gradient when viewed from the material side. The 
values of the stresses around the crack tip in mode 
I of fracture are described by the following for-
mulas in a polar coordinate system [13]:
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where: r is the distance between the crack tip and 
the analyzed point, θ is the angle between 
the crack line and the analyzed point, KI is 
the stress intensity factor in mode I. This 
situation is illustrated in Figure 2.

Similarly, the stresses around the crack tip for 
mode II are shown in the following formulas:

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥.II = −
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Fig. 1. A Griffith‘s crack placed at any angle β
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Stress intensity factors in mode I and II for theo-
retical kinked Griffith’s crack can be described as:

𝐾𝐾𝐾𝐾I = 𝐾𝐾𝐾𝐾I0 ⋅ cos2(𝛽𝛽𝛽𝛽) 
 

(3a)

𝐾𝐾𝐾𝐾II = 𝐾𝐾𝐾𝐾I0 ⋅ cos(𝛽𝛽𝛽𝛽) ⋅ sin(𝛽𝛽𝛽𝛽) (3b)

where: KI0 is the stress intensity factor in mode I 
for β = 0°. 

For a crack placed at any angle, the mixed-
mode should be used, i.e., the stress values are 
summed up:

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥.I + 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥.II 
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(4)

This allows to apply the formula for the maxi-
mum principal stress as the maximum of the two 
formulas below:
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Maximum principal stresses around the 
Griffith’s crack for radius r = 1 are presented 
in Figure 3. It can be seen that for mode I (ini-
tial crack at angle β = 0°) the local minimum is 
obtained for angle 0°, for mode II (initial crack 
at angle β = 90°) is for angle 70.529°, and for 
mixed-mode, these should be values in between. 
Based on these results, it was found that the frac-
ture angle α is the value of this minimum. The 
relationship between the initial angle β and the 
fracture angle α for all criteria will be presented 
at the end of this chapter.

The Ottosen-Podgórski (O-P) criterion by 
Podgórski [14, 15] is expressed as a relationship 
of three alternative stress tensor invariants:

𝜎𝜎𝜎𝜎0 − 𝐶𝐶𝐶𝐶0 + 𝐶𝐶𝐶𝐶1𝑃𝑃𝑃𝑃(𝐽𝐽𝐽𝐽)𝜏𝜏𝜏𝜏0 + 𝐶𝐶𝐶𝐶2𝜏𝜏𝜏𝜏02 = 0 (6)

Fig. 2. Theoretical stresses around the crack tip

Fig. 3. Maximum principal stresses around the crack tip, a) Stresses in mode I, b) Stresses in mode II

a)

b)
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where: P(J) is a function describing the cross-sec-
tion of the boundary surface by a devia-
tor plane σ0 = const., and is given by the 
equation P(J) = cos(⅓arccosξJ – φ), J here 
stands for alternative stress tensor invari-
ant and ξ, φ, C0, C1, C2 are parameters that 
can be calculated from material constants 
[15, 16]. In this case, instead of the maxi-
mum principal stresses around the crack 
tip, the values of the material effort func-
tion ω is calculated as:

𝜔𝜔𝜔𝜔(𝑟𝑟𝑟𝑟,𝜃𝜃𝜃𝜃) =
�𝜎𝜎𝜎𝜎02 + 𝜏𝜏𝜏𝜏02

�𝜎𝜎𝜎𝜎𝑓𝑓𝑓𝑓2 + 𝜏𝜏𝜏𝜏𝑓𝑓𝑓𝑓2
 (7)

where: σ0 and τ0 are the normal and tangential oc-
tahedral stresses determined at the tested 
point around the crack tip in the polar 
system, respectively; and σf and τf are the 
values of critical stresses proportional to 
σ0 and τ0, respectively.

By inserting stresses σx, σy and τxy from Eq. 
(4) as data around the crack tip, the dependence 
of the angle around the crack tip θ and the mate-
rial effort ω can be found. It is very similar to 
the graph of the maximum principal stresses in 
Figure 1, so ω also takes a local minimum in the 
direction of the crack propagation.

Displacements-based criteria

Similarly to the stresses, the displacement 
formulas around the tip of the Griffith’s crack for 
modes I and II can also be found [13]:
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where:

𝜅𝜅𝜅𝜅 = �
3 − 4𝜈𝜈𝜈𝜈  for plane strain

(3 − 𝜈𝜈𝜈𝜈)
1 + 𝜈𝜈𝜈𝜈

  for plane stress
 (9)

where: μ is the shear modulus, ν is the Poisson’s 
ratio (for all calculations assumed as 0.2), 
ux and uy are horizontal and vertical dis-
placements at any point in the polar sys-
tem around the crack tip, respectively. 

The diagram of these displacements is shown 
in Figure 4. The displacements can be also rotated 
to the local coordinate system:

𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟 = 𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥 cos(𝜃𝜃𝜃𝜃)− 𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦 sin(𝜃𝜃𝜃𝜃) 

𝑢𝑢𝑢𝑢𝜃𝜃𝜃𝜃 = 𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥 sin(𝜃𝜃𝜃𝜃) + 𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦 cos(𝜃𝜃𝜃𝜃) 

𝑢𝑢𝑢𝑢 = �𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟2 + 𝑢𝑢𝑢𝑢𝜃𝜃𝜃𝜃2 

(10)

where: ur will be called as displacements along 
the radius and uθ as displacements per-
pendicular to the radius. u are resultant 
displacements. 

These displacements are shown in Figure 5. 
According to the diagram in mode I, three differ-
ent conditions can be deduced. The crack will oc-
cur in the direction 0°, in which:
 • the displacements ur reach a local minimum,
 • the first derivative of the displacements uθ 

reaches the local minimum,
 • the resultant displacements u reaches the local 

minimum.

In mode II, these conditions are met for the 
following angles:
 • 45.275° for minimum displacements ur,
 • 52.776° for a minimum of the first derivative 

of the displacements uθ,
 • 0° for minimum magnitude displacements u.

As it can be seen, these values are significantly 
different from these obtained by the stress-based 
criteria. The relationship between the initial angle 
β and the fracture angle α will be presented later.

Fig. 4. Theoretical displacements around the crack tip
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Criterions based on stress intensity factors

The next analyzed criterion is the maximum 
circumferential tensile stress (MTS) criterion by 
Erdogan and Sih [11]. This is a criterion based 
only on the stress intensity factors, where, the 
fracture occurs in the direction for which the cir-
cumferential stress σθθ described by the formula 
below reaches the local maximum:

𝜎𝜎𝜎𝜎𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 =
𝐾𝐾𝐾𝐾I
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(11)

Analyzing the graph in Figure 6 it turns out 
that the maximum of this function is for θ = 0° in 
mode I of fracture and 70.529° in mode II.

The last criterion is the maximum energy 
release rate criterion (MERR) developed by 
Hussain et al. and Wu [17, 18]. It defines the 
crack angle where the energy release rate takes 
the maximum:

𝐺𝐺𝐺𝐺 =
𝑘𝑘𝑘𝑘I2 + 𝑘𝑘𝑘𝑘II2

𝐸𝐸𝐸𝐸
 (12)

Where:
𝑘𝑘𝑘𝑘I = 𝐶𝐶𝐶𝐶11𝐾𝐾𝐾𝐾I − 𝐶𝐶𝐶𝐶12𝐾𝐾𝐾𝐾II 

 
(13a)

Fig. 5. Displacements around the crack tip, a) Displacements in mode I, b) Displacements in mode II

b)

a)

Fig. 6. Circumferential tensile stress around the crack tip, a) Circumferential tensile 
stress in mode I, b) Circumferential tensile stress in mode II

b)a)
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where: E – is the young modulus assumed 1 for 
simplicity. 

The maximum energy release rate is obtained 
for θ = 0° in mode I and 70.529° in mode II. Figure 
7 shows a diagram of the relationship between the 
initial crack angle and the fracture direction. As it 
can be seen, all criteria based on stresses and stress 
intensity factors give practically the same results, 
while criteria based on displacements give very 
different results. In the first of these criteria, for an 
initial angle less than 60°, the fracture will be at an 
angle greater than 60° (right-down direction) and 
for an initial angle greater than 60°, the fracture will 
be at an angle less than 60° (right-up direction). The 
crack is horizontal for an initial angle of 0° and 60°.

NUMERICAL METHOD OF DETERMINING 
THE DIRECTION OF THE CRACK

The built-in method in Abaqus

The main goal of the authors of this study was 
to verify their own procedure for determining the 
crack path in the Abaqus FEA system. In the be-
ginning, it was also decided to test the effective-
ness of the built-in method of the Abaqus system. 
The default criterion that works with the X-FEM 
method is the maximum principal stress criterion. 
The method of its operation is presented in this 
subsection based on [19].

Abaqus in the X-FEM method in a plane stress 
state allows the use of only four-node CPS4 ele-
ments, with four integration points near each node. 
However, it is possible to select elements with 
reduced integration CPS4R (with one integration 
point in the middle of the element). CPS4 elements 
have been selected for all simulations. When a 
fracture reaches a finite element, its shape function 
is enriched. Abaqus reads the stresses at the inte-
gration points (Gauss points) and then calculates 
the principal stresses from them. These stresses are 
averaged from four points and fracture is conduct-
ed when these stresses exceed the tensile strength 
specified by the user. The direction of the crack is 
at the same angle as the averaged angle α of rota-
tion of the stress tensor components to the princi-
pal stresses. This situation is shown in Figure 8.

Fig. 7. Comparison of the analyzed criteria predicting the direction of the crack propagation 
(α = β – direction normal to applied stress)
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tan(2𝛼𝛼𝛼𝛼) =
2𝜏𝜏𝜏𝜏𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥 − 𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥
 (14)

This is a very simple method but has many dis-
advantages. Only the stresses at single integration 
points are always considered. If an element with 
four integration points is selected, the values from 
these four points are averaged. Thus, the stresses in 
the finite elements adjacent to the element contain-
ing the crack tip are still omitted. Another disadvan-
tage is that the stresses are taken from the integration 
points. A more correct approach would be to take 
the stress values from a point close to the crack tip.

This algorithm is repeated for every iteration 
of the calculation to find the solution. If the solu-
tion is found the crack is lead to the next element 
and the next load increment is calculated.

Author’s method

A detailed description of the own method of 
predicting the direction of the crack propagation 
can be found in the author’s previous publication 
[1]. Here only its assumptions will be presented.

In each load increment for the maximum prin-
cipal stress criterion and the Ottosen-Podgórski 
criterion the algorithm is as follows:
 • The coordinates of the crack tip are searched,
 • Stresses at several dozen closest integration 

points around the crack tip are read (50–100 
points were adopted to ensure that the result 
was sufficiently accurate and so the calcula-
tions did not last unnecessarily long),

 • From these stresses, the maximum principal 
stresses or the material effort ω for the Ottosen-
Podgórski criterion are determined (Fig. 9a),

Fig. 8. Rotation of stress tensors to principal stresses at integration points in an enriched finite element

Fig. 9. Calculating method of the new crack angle 
around the crack tip, a) Principal stresses, b) Stresses 

reduced to a radius = 1, c) Finding the minimum

a)

b)

c)
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 • These values are reduced to the unit radius 
(Fig. 9b),

 • The obtained values are analyzed for their de-
pendence on the angle θ around the crack tip,

 • The 6th order polynomial is fitted to these 
points by the least square method,

 • The local minimum of the polynomial closest 
to the angle from the previous load increment 
is found by the bisection method (Fig. 9c).

The reduction of the value to the unit radius 
means that the values are correspondingly de-
creased if the distance of their point from the crack 
tip is less than 1 or increased if the distance is 
greater than 1. This assumption is derived from the 
formula (1) in which it can be seen that the stresses 
are decreasing at a rate of 1/ √r. This algorithm was 
programmed in Fortran as Abaqus User Subroutine 
and the code is compiled during each simulation.

The main advantage of this method is that 
stress from multiple integration points is used in 
the calculation, not just stress at a single finite 
element. Moreover, in the built-in method, the 
tangential stresses, which are often disturbed near 
the crack tip, have a big influence on the results. 
In the own method, the stresses at a greater dis-
tance from the crack tip, which are already more 
stabilized, are taken into account. In addition, the 
tangential stresses are of less importance. This 
makes the crack path much more correct and 
smooth, as shown in the previous publication [1].

Criteria based on displacements have been 
implemented very similarly. Displacements are 
read at element nodes, not at integration points. 
So, there are fewer points, which is associated 
with lower accuracy of the results. Displacements 

in the horizontal and vertical directions have to be 
properly corrected. In the case of stresses, theoret-
ically, they grow to infinity at the crack tip, while 
the displacements according to the formula (8) 
tend to 0. In fact, in various simulations, depend-
ing on the model, the displacements at the crack tip 
will not be equal to 0, hence the displacements at 
all points need to be decreased by values obtained 
at the crack tip. Then the displacements along the 
radius ur, the displacements perpendicular to the 
radius uθ, and the resultant displacements u are 
calculated as in equation (10). In the same way, 
as in the previous criteria, they are placed on the 
graph, reduced to a unit radius, according to the 
assumption in the formula (8) that the displace-
ments increase at the rate √r. Again, the polyno-
mial is matched to these values and depending on 
the selected criterion, the minimum displacements 
ur, the minimum derivative of displacements uθ, or 
the minimum displacements u is searched.

In the MTS criterion, the direction of the crack 
propagation is determined by the minimum of the 
function (11). In this case, it was necessary to find the 
stress intensity factors at the crack tip during simula-
tion. For this purpose, the direct method was used:

𝐾𝐾𝐾𝐾I =
2𝜇𝜇𝜇𝜇𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦
𝜅𝜅𝜅𝜅 + 1

� 2𝜋𝜋𝜋𝜋
−𝑟𝑟𝑟𝑟 → 0

 

𝐾𝐾𝐾𝐾II =
2𝜇𝜇𝜇𝜇𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥
𝜅𝜅𝜅𝜅 + 1

� 2𝜋𝜋𝜋𝜋
−𝑟𝑟𝑟𝑟 → 0

 

(15)

where:  ux and uy are the differences in displacements 
on both sides of the crack along the crack 
and perpendicular to the crack, respectively 
(ux = u1r – u2r , uy = u1θ – u2θ as in Fig. 10).

To find only the direction of the crack propa-
gation, only the ratio between the stress intensity 
factors is enough, which, based on formula (15) is:

𝐾𝐾𝐾𝐾I
𝐾𝐾𝐾𝐾II

=
𝑢𝑢𝑢𝑢𝑦𝑦𝑦𝑦
𝑢𝑢𝑢𝑢𝑥𝑥𝑥𝑥

 (16)

This means that the calculation algorithm in 
this criterion is very similar to the displacement-
based criteria. In this case, instead of searching 
the angle for which the minimum displacement 
values were obtained, we find the displacements 
ur and uθ for the angles -180° and 180° and these 
are the values u1r, u2r, u1θ, and u2θ.

Fig. 10. Method of determining the 
displacements on both sides of the crack
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modeled as in Figure 11a. It was ensured that the 
size of the model was large enough in relation to 
the size of the initial crack. The model mesh is 
shown in Figures 11b–c.

The entire model had dimensions of 100×100, 
and the length of the initial crack was 8, while the 
mesh size ranged from 0.02 near the crack tip to 
0.5 around the initial crack, to 5 for the rest of the 
model. The load was applied as a distributed force 
on the upper and lower edges of the model. The 
value of the load does not matter, because only 
the direction of the crack propagation is needed. 
10 models were made, with the initial crack at an 
angle β from 0° to 90°, every 10°.

One problem with this task is that it is point 
symmetric. In fact, the fracture should appear 
symmetrically on both sides of the initial crack. 
Unfortunately, the X-FEM method in the Abaqus 
system, and especially the described own method, 
is not suited to simulate more than one crack. For 
this reason, it was decided to dense the mesh in 
only one crack tip to force the fracture there.

Fig. 11. The model with the initial crack at angle 
β = 0°, a) Boundary conditions and loads, 

b) Model grid, c) Close-up on the initial crack

NUMERICAL ANALYSIS

Description of the model

Due to the limitations of the Finite Element 
Method, it is not possible to make an infinite 
model. For this reason, the Griffith’s crack was 

c)

b)

a)

Fig. 12. Simulation examples, a) Initial crack incor-
rectly determined, b) Maximum principal stresses 

around the crack tip

a)

b)
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The main purpose of the following calcula-
tions is to find the initial crack propagation angle. 
After a crack appears, the angle of propagation will 
probably change with the distance from the initial 
crack. Therefore, a big problem is properly inter-
preting the calculated initial angle. A crack through 
the first finite element is always incorrect because 
there are no crack tip coordinates defined by the 
X-FEM algorithm. Before fracture, the coordinates 
of the integration point with the greatest principal 
stresses are taken as the coordinates of the hypo-
thetical crack tip. Unfortunately, this raises a cer-
tain problem presented in Figure 12a. The program 
finds the integration point of the highest principal 
stresses and conducts the fracture at an angle simi-
lar to the one obtained in the theoretical analysis. 
The figure shows that the fracture cannot start from 
the model edge, which also misleads subsequent 
calculations, because then there are two crack tips.

To eliminate this problem, a blunted crack can 
be used, but this one also has its drawbacks – in 
close proximity, the crack path shape is not consis-
tent with the theoretical assumptions of this task. 
For this reason, two pairs of all simulations were 
performed – with a sharp crack and blunted crack.

Because the fracture in the first element is al-
ways incorrect the crack needs to stabilize. It was 
decided to measure the crack angle as an average 
for the first 2–3 cracked finite elements.

RESULTS

Simulations for sharp and for blunted crack 
were performed for all criteria. However, simula-
tions for the criterion of minimum magnitude dis-
placements u were omitted, as the results of the 
theoretical analysis completely differ from the re-
sults for the other criteria (Fig. 7). Also, the MERR 
criterion is not implemented at the moment.

Figure 12b shows the map of maximum prin-
cipal stresses obtained in the simulations around 
the tip of the initial crack at the angle of 0°. Lower 
stresses in the horizontal direction are clearly vis-
ible here, which are responsible for the local min-
imum as in the theoretical approach to this task. 
According to the assumptions of the own method 
of predicting the crack propagation direction, the 
crack should be led towards this local minimum.

Figure 13 shows the diagrams of the rela-
tionship between the angle of the initial crack 
and the predicted direction of the fracture. Here, 
the results for sharp and for blunted crack were 

compared with the directions obtained by the 
theoretical analysis as well as the results of the 
procedure built into the Abaqus system. The com-
parison of the implemented procedures with the 
results obtained in the laboratory and “in situ” 
tests is given in the previous authors paper [1].

It can be seen from these figures that the 
propagation angles obtained in the simula-
tions are closest to the theoretical solutions for 
the stress-based criteria (Fig. 13a–b). In these 
simulations, a change in the crack propagation 
angle after exceeding the angle of 60° of the 
initial crack is also noticed, as it was for theo-
retical calculations. It turns out that the criterion 
of maximum principal stresses built into the 
Abaqus system (Fig. 13f) is less precise than the 
above criteria implemented by the authors.

The displacement-based criteria give results sim-
ilar to the stress-based criteria (Fig. 13c–d), however, 
they are far from theoretical calculations. In fact, in 
this case, the crack runs close to the horizontal direc-
tion. This may be related to a slightly different dis-
tribution of displacements in the simulation results 
compared to the theoretical displacements from the 
formulas (8). It may also be related to the lack of 
point symmetry after the initiation of the crack in the 
first element. Another reason may be the incorrect 
assumptions of these criteria themselves.

The MTS criterion also gives incorrect simu-
lation results (Fig. 13e), especially for large an-
gles of the initial crack. In this criterion, the stress 
intensity factors were calculated based on dis-
placements which, as mentioned earlier, may not 
be correct. In addition, the displacements impor-
tant for determining the stress intensity factors are 
read for the angles -180° and 180° relative to the 
angle from the previous increment, which means 
that these are displacements near the initial crack 
(see Fig. 14) which are subject to disturbances.

The above problems with the MTS criterion 
make the crack path predicted by this criterion 
very inaccurate (see Fig. 15b). For comparison, 
Figure 15a shows a smooth fracture line obtained 
from the criterion of maximum main stresses. 
The MTS criterion for large initial fracture angles 
gives completely incorrect results as shown in 
Figure 15c (see also Fig. 13e).

Finally, Figure 16 shows the comparison of 
the crack path obtained in the simulations and 
the theoretical analysis for the maximum princi-
pal stresses criterion, with the initial crack ev-
ery 10°. As it can be seen, despite some differ-
ences visible in Figure 13a, the direction of the 
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Fig. 13. The relationship between the angle of the initial crack and the angle of crack propagation 
for the analyzed criteria, a) Maximum principal stress criterion, b) Ottosen-Podgórski criterion, 

c) Minimum duθ criterion, d) Minimum ur criterion, e) MTS criterion, f) Built-in criterion

fracture does not actually differ much between 
the described approaches. The maximum ob-
served difference is about 10°, which, based on 
the full angle of 360°, is only a 3% error. The 
crack initiation point is also in the correct area 

in the simulations. It can therefore be concluded 
that the implemented stress-based criteria give 
the correct results. The simulation results for the 
remaining criteria, including the use of the built-
in criterion in Abaqus, are also not very far from 

d)

e) f)

c)

b)a)
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reality, however, the stress-based criteria imple-
mented using the own method of predicting the 
crack propagation direction give the best results.

CONCLUSIONS

The paper presents the results of simulation of 
the Griffith crack propagation inclined at any angle 
with respect to the direction of the tensile load. The 
direction of the crack propagation appearing at the 
tip of the initial crack was analyzed. The X-FEM 
method in the Simulia Abaqus FEA system was 
used to simulate the crack propagation. The follow-
ing criteria were analyzed: the maximum principal 
stresses criterion, the Ottosen-Podgórski criterion, 
the criterion of minimum displacements along the 
radius, the criterion of the minimum derivative of 

Fig. 14. Magnitude displacements around the crack tip 
showing which points are relevant to certain criteria

Fig. 15. Examples of predicted crack shape, 
a) Maximum principal stress criterion – initial 
crack at 70°, b) MTS criterion – initial crack at 

40°, c) MTS criterion – initial crack at 70°

Fig. 16. Comparison of the crack propagation angles 
– simulation and theory. only half of the initial 

crack is shown, a) Blunted crack, b) Sharp crack

a)

b)

c)

b)

a)
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displacements perpendicular to the radius, and the 
maximum circumferential tensile stress criterion 
(MTS), all implemented by the Abaqus User Sub-
routines. The obtained results were confronted with 
the criterion built into the Abaqus system. The results 
were compared with the theoretical calculations.

It turned out that the results obtained for the 
stress-based criteria are the closest to reality. Unfor-
tunately, the own implementation of criteria based 
on displacement and stress intensity factors has 
some drawbacks, leading to incorrect results. Per-
haps for the MTS criterion, it is necessary to find 
another way to determine the stress intensity factors.

It is also worth noting the slight influence of 
the shape of the crack tip. A sharp crack may make 
it difficult to find the correct fracture of the first 
element, while a blunted crack does not have the 
defined exact tip coordinates. To overcome this 
problem, the best solution would be to use trian-
gular elements that have integration points at the 
vertices of the triangle, and therefore precisely at 
the model nodes. Unfortunately, Abaqus does not 
allow the use of triangular elements, as they cur-
rently do not work with the X-FEM method.

In the future, it is planned to thoroughly inves-
tigate and improve criteria based on displacement 
and stress intensity factors. The long plans include 
creating own FEM code, in which it would be pos-
sible to use triangular elements and in which the 
authors would have full control over the algorithm. 
Currently, only an incomplete modification of the 
algorithm is possible, which is allowed by the 
Abaqus system with the user subroutines.
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