PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Annual and semi-annual variations of TEC over Nepal during the period of 2007–2017 and possible drivers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The total electron content (TEC) variation of the ionospheric layer is mostly controlled by Geomagnetic and solar activity. The TEC of the ionosphere can be estimated using the satellite signal delay recorded at GPS sites. In this study, the TEC data from three nearby GPS stations (CHLM, BMCL, and LMJG) from Nepal are extracted for about 11 years period (2007–2017). For the computation of the TEC data, wavelet transform, global wavelet power spectrum, cross wavelet trans form, and wavelet coherence techniques are used. Utilizing such long-term GPS TEC data, Annual Oscillation (AO) and Semi-annual Oscillation (SAO) are identified in the daytime and nighttime TEC over Nepal. The SAO is found to be dominating periodicity in the daytime TEC, whereas the AO is found to dominant at night. In addition, possible connections with the indicators of geomagnetic and solar activity were studied. The geomagnetic indices AE and AU are exhibit a change in phase and are most consistent with both daytime and nighttime AO, implying that these indices could be the likely drivers of TEC’s AO and SAO periodicities. The Dst index, on the other hand, is recognized as the most prominent driver of SAO in both daytime and nighttime TEC.
Czasopismo
Rocznik
Strony
929--942
Opis fizyczny
Bibliogr. 55 poz.
Twórcy
  • Central Department of Physics, Institute of Science and Technology, Tribhuvan University, Kirtipur, Nepal
  • St. Xavier’s College, Maitighar, Kathmandu, Nepal
  • Gyan Research Academy for Communication and Education (GRACE), Kathmandu, Nepal
autor
  • St. Xavier’s College, Maitighar, Kathmandu, Nepal
  • Amrit Campus, Tribhuvan University, Thamel, Nepal
autor
  • Gyan Research Academy for Communication and Education (GRACE), Kathmandu, Nepal
Bibliografia
  • 1. Amaechi PO, Oyeyemi EO, Akala AO (2018) Geomagnetic storm effects on the occurrences of ionospheric irregularities over the African equatorial/low-latitude region. Adv Space Res 61(8):2074–2090. https://doi.org/10.1016/j.asr.2018.01.035
  • 2. Bagiya MS, Joshi HP, Iyer KN, Aggarwal M, Ravindran S, Pathan BM (2009) TEC variations during low solar activity period (2005–2007) near the equatorial ionospheric anomaly crest region in India. Ann Geophys 27(3):1047–1057. https://doi.org/10.5194/angeo-27-1047-2009
  • 3. Bergeot N, Tsagouri I, Bruyninx C, Legrand J, Chevalier JM, Defraigne P, Baire Q, Pottiaux E (2013) The influence of space weather on ionospheric total electron content during the 23rd solar cycle. J Space Weather Space Clim. https://doi.org/10.1051/swsc/2013047
  • 4. Chauhan V, Singh OP, Singh B (2011) Diurnal and seasonal variation of GPS-TEC during a low solar activity period as observed at a low latitude station Agra. 94.20. dv; 96.60. qd.http://hdl.handle.net/123456789/11195
  • 5. Chen C, Chu X (2017) Two-dimensional Morlet wavelet transform and its application to wave recognition methodology of automatically extracting two-dimensional wave packets from lidar observations in Antarctica. J Atmos Solar Terr Phys 162(September):28–47. https://doi.org/10.1016/j.jastp.2016.10.016
  • 6. Cheng Z, Cummer SA (2005) Broadband VLF measurements of lightning-induced ionospheric perturbations. Geophys Res Lett 32(8):1–4
  • 7. Cohen MX (2018) A better way to define and describe Morlet wavelets for time-frequency analysis. BioRxiv. https://doi.org/10.1101/397182
  • 8. Correia E, Raulin JP, Kaufmann P, Bertoni FCP, Moro J (2010) Monitoring of atmospheric changes related to sun-earth interactions. INCT-APA Annual Activity Report, May 2015, 20–26. https://doi.org/10.4322/apa.2014.018
  • 9. Daffer PZ, Kaneko H (2005) A construction of wavelets. J Comput Anal Appl 7(4):373–382. https://doi.org/10.1201/b16046-3
  • 10. Farouk MH (2018) Wavelets, Wavelet Filters, and Wavelet Transforms. 11–21. https://doi.org/10.1007/978-3-319-69002-5_3
  • 11. Feichtinger HG, Gröchenig K (1992) Gabor Wavelets and the Heisenberg Group: Gabor Expansions and Short Time Fourier Transform from the Group Theoretical Point of View. Academic Press, Inc., In Wavelets. https://doi.org/10.1016/b978-0-12-174590-5.50018-6
  • 12. Ghimire BD, Chapagain NP, Basnet V, Bhatta K, Khadka B (2020) Variation of GPS-tec measurements of the year 2014: a comparative study with IRI-2016 model. J Nepal Phys Soc 6(1):90–96. https://doi.org/10.3126/jnphyssoc.v6i1.30555
  • 13. Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11(5/6):561–566
  • 14. Guharay A, Nath D, Pant P, Pande B, Russell JM, Pandey K (2009) Observation of semiannual and annual oscillation in equatorial middle atmospheric long term temperature pattern. Ann Geophys 27(11):4273–4280. https://doi.org/10.5194/angeo-27-4273-2009
  • 15. Hartman JD, Bakos GÁ (2016) VARTOOLS: a program for analyzing astronomical time-series data. Astron Comput 17:1–72
  • 16. Heelis RA, Maute A (2020) Challenges to understanding the earth’s ionosphere and thermosphere. J Geophys Res Space Phys 125(7):1–44. https://doi.org/10.1029/2019JA027497
  • 17. Hofmann-Wellenhof B, Lichtenegger H, Collins J (2001) Global positioning system (GPS). In: Theory and practice. Springer.
  • 18. Huang YN, Cheng K (1995) Solar cycle variation of the total electron content around equatorial anomaly crest region in east Asia. J Atmos Terr Phys 57(12):1503–1511. https://doi.org/10.1016/0021-9169(94)00147-G
  • 19. Kessler BM, Payne GL, Polyzou WN (2003) Wavelet Notes. 1–86. http://arxiv.org/abs/nucl-th/0305025
  • 20. Klobuchar JA (1987) Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans Aerosp Electron Syst 3:325–331. https://doi.org/10.1109/TAES.1987.310829
  • 21. Laštovička J (1974) On the role of the solar Lyman-α radiation in ionospheric absorption at 2775 kHz. Pure Appl Geophys PAGEOPH 112(4):655–663. https://doi.org/10.1007/BF00876805
  • 22. Liu JY, Tsai HF, Jung TK (1996) Total electron content obtained by using the global positioning system. Terrestrial Atmos Ocean Sci 7(1):107–117. https://doi.org/10.3319/TAO.1996.7.1.107(A)
  • 23. Liu GC, Lachapelle G (2002) Ionosphere weighted GPS cycle ambiguity resolution. In: Proceedings of the 2002 National Technical Meeting of the Institute of Navigation (pp. 889–899).https://www.ion.org/publications/abstract.cfm?articleID=280
  • 24. Liu J, Hernandez-Pajares M, Liang X, An J, Wang Z, Chen R, Sun W, Hyyppä J (2017) Temporal and spatial variations of global ionospheric total electron content under various solar conditions. J Geodesy 91(5):485–502. https://doi.org/10.1007/s00190-016-0977-7
  • 25. Macotela EL, Raulin JP, Manninen J, Correia E, Turunen T, Magalhães A (2017) Lower ionosphere sensitivity to solar X-ray flares over a complete solar cycle evaluated from VLF signal measurements. J Geophys Res Space Phys 122(12):12–370. https://doi.org/10.1002/2017JA024493
  • 26. Macotela EL, Clilverd M, Manninen J, Moffat-Griffin T, Newnham DA, Raita T, Rodger CJ (2019) D-region high-latitude forcing factors. J Geophys Res Space Phys 124(1):765–781
  • 27. Marov MY, Kuznetsov VD (2015) Solar flares and impact on earth. In: Pelton J, Allahdadi F (eds) Handbook of cosmic hazards and planetary defense. Springer, Cham.https://doi.org/10.1007/978-3-319-03952-7_1
  • 28. Morlet J, Arens G, Fourgeau E, Glard D (1982) Wave propagation and sampling theory—Part I: complex signal and scattering in multilayered media. Geophysics 47(2):203–221. https://doi.org/10.1190/1.1441328
  • 29. Mukhtarov P, Andonov B, Borries C, Pancheva D, Jakowski N (2010) Forcing of the ionosphere from above and below during the Arctic winter of 2005/2006. J Atmos Solar Terr Phys 72(2–3):193–205. https://doi.org/10.1016/j.jastp.2009.11.008
  • 30. Oikonomou C, Haralambous H, Muslim B (2016) Investigation of ionospheric TEC precursors related to the M7. 8 Nepal and M8. 3 Chile earthquakes in 2015 based on spectral and statistical analysis. Nat Hazards 83(1):97–116. https://doi.org/10.1007/s11069-016-2409-7
  • 31. Ogwala A, Somoye EO, Ogunmodimu O, Adeniji-Adele RA, Onori EO, Oyedokun O (2019) Diurnal, seasonal and solar cycle variation in total electron content and comparison with IRI-2016 model at BirninKebbi. Anna Geophys 37(5):775–789. https://doi.org/10.5194/angeo-37-775-2019
  • 32. Pap J, Tobiska WK, Bouwer SD (1990) Periodicities of solar irradiance and solar activity indices. I Solar Phys 129(1):165–189. https://doi.org/10.1007/BF00154372
  • 33. Pedatella NM, Lei J, Larson KM, Forbes JM (2009) Observations of the ionospheric response to the 15 December 2006 geomagnetic storm: Long‐duration positive storm effect. J Geophys Res Space Phys 114(A12). https://doi.org/10.1029/2009JA014568
  • 34. Pulinets S, Boyarchuk K (2004) Ionospheric precursors of earthquakes. Springer, New York
  • 35. Pundhir D, Singh B, Singh OP, Gupta SK (2016) Anomalous variations of ionosphere associated with the strong earthquake at Pakistan-Iran border at a low latitude station Agra, India. Acta Geophys 64(3):796–809. https://doi.org/10.1515/acgeo-2016-0020
  • 36. Rama Rao PVS, Niranjan K, Prasad DSVVD, Brahmanandam PS, Gopikrishna S (2005) Features of additional stratification in ionospheric F2 layer observed for half a solar cycle over Indian low latitudes. J Geophys Res Space Phys. https://doi.org/10.1029/2004JA010646
  • 37. Rao GS (2007) GPS satellite and receiver instrumental biases estimation using least squares method for accurate ionosphere modelling. J Earth Syst Sci 116(5):407–411. https://doi.org/10.1007/s12040-007-0039-x
  • 38. Raulin JP, Trottet G, Kretzschmar M, Macotela EL, Pacini A, Bertoni FC, Dammasch IE (2013) Response of the low ionosphere to X‐ray and Lyman‐α solar flare emissions. J Geophys Res Space Phys 118(1):570–575
  • 39. Rawer K (2013) Wave propagation in the ionosphere. Springer, NewYork
  • 40. Reddybattula KD, Panda SK, Ansari K, Peddi VSR (2019) Analysis of ionospheric TEC from GPS, GIM and global ionosphere models during moderate, strong, and extreme geomagnetic storms over Indian region. Acta Astronaut 161:283–292. https://doi.org/10.1016/j.actaastro.2019.05.042
  • 41. Russell B, Han J (2016) Jean Morlet and the continuous wavelet transform. 28(1946):1–15. https://crewes.org/ForOurSponsors/ResearchReports/2016/CRR201668.pdf
  • 42. Russell CT, McPherron RL (1973) Semiannual variation of geomagnetic activity. J Geophys Res 78(1):92–108. https://doi.org/10.1029/JA078i001p00092
  • 43. Seemala GK, Valladares CE (2011) Statistics of total electron content depletions observed over the southern American continent for the year 2008. Radio Sci. https://doi.org/10.1029/2011RS004722
  • 44. Sharma G, Kandel KP, Khadka B, Schnoor PW, Bhatta K, Ghimire BD, Thapa AS (2017) A study on the VLF/LF long term amplitude oscillations associated with frequencies 37.5 kHz and 45.9 kHz received at KeilLongwave Monitor, Keil, Germany. Int J Geosci 08(09):1080–1090. https://doi.org/10.4236/ijg.2017.89061
  • 45. Shinbori A, Koyama Y, Nose M, Hori T, Otsuka Y, Yatagai A (2014) Long-term variation in the upper atmosphere as seen in the geomagnetic solar quiet daily variation Geomagnetism. Earth Planets Space 66(1):1–20. https://doi.org/10.1186/s40623-014-0155-1
  • 46. Silber I, Price CG, Rodger CJ (2015) Semi-annual oscillation (SAO) of the night timeionospheric D-region as detected through ground-based VLF receivers. Atmos Chem Phys Discuss 15(21):30383–30407. https://doi.org/10.5194/acpd-15-30383-2015
  • 47. Silber I, Price C, Rodger CJ (2016) Semi-annual oscillation (SAO) of the nighttime ionospheric D region as detected through ground-based VLF receivers. Atmos Chem Phys 16(5):3279–3288
  • 48. Tangborn, A., Modeling, G., Office, A., & Space, G. (2011). Wavelet Transforms in Time Series Analysis. İstanbul Aydın Üniversitesi Dergisi, 3(9), 61–94. https://dergipark.org.tr/en/pub/iaud/issue/30054/324499
  • 49. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78
  • 50. Vaishnav R, Jacobi C, Berdermann J (2019) Long-term trends in the ionospheric response to solar extreme-ultraviolet variations. Ann Geophys 37(6):1141–1159. https://doi.org/10.5194/angeo-37-1141-2019
  • 51. Wang W, Lei J, Burns AG, Solomon SC, Wiltberger M, Xu J, Zhang Y, Paxton L, Coster A (2010) Ionospheric response to the initial phase of geomagnetic storms: common features. J Geophys Res Space Physics 115(7):1–18. https://doi.org/10.1029/2009JA014461
  • 52. Williams ER, Sátori G (2007) Solar radiation-induced changes in ionospheric height and the Schumann resonance waveguide on different timescales. Radio Sci 42(2):1–8. https://doi.org/10.1029/2006RS003494
  • 53. Yi H, Shu H (2012) The improvement of the Morlet wavelet for multi-period analysis of climate data. Comptes Rendus Geosci 344(10):483–497. https://doi.org/10.1016/j.crte.2012.09.007
  • 54. Yu K, Rizos C, Burrage D, Dempster AG, Zhang K, Markgraf M (2014) GNSS remote sensing. Tijdschriftvoor Urologie. https://doi.org/10.1186/1687-6180-2014-158
  • 55. Zakaria K, Huma S, Choudry AA (2019) EEG data analysis by wavelet power spectrum and global wavelet spectrum. Int J Sci Eng Res 10(3):1058–1066
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c95d42a2-d8d5-4afd-ab92-68dcda63878b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.