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The paper deals with the sliding-mode torque control of induction motor drives. Two 
possible control strategies are presented, with stator and with rotor flux stabilization. 
Mathematical model of the considered drive system and control algorithm is presented. 
Simulation and experimental results are demonstrated to verify the described algorithms. 
 

1. Introduction 
 
 A number of requirements are set to modern electric drives. Superb dynamic 
behaviour, dependable work, low cost, high power efficiency, motor parameters 
mismatch insensitivity, simple technical implementation are among the demands. 
High efficiency, dependable work and low cost can be assured by the usage of an 
induction motor (IM). However, quite complicated control systems must be applied 
in order to achieve excellent dynamic transients. This paper presents the Direct 
Torque Sliding-Mode Control (DTSMC), one of possible ways of controlling the 
induction motor drive.  
 Sliding-mode control systems as one of variable structure systems (VSS) have 
been investigated in Russia from early 1930s [15]. However, first IM drive 
applications appeared at the turn of 1970s and 1980s as a result of Sabanovic and 
Izosimov works [3], [11], [12]. The following years achievements enriched the IM 
Sliding-Mode Control theory, among them are the important Utkin’s paper [14], 
the one considering position control [16] and others, [10], [18]. The subject appears 
to be still unexhausted and in recent years many new articles have appeared. 
Authors in [9] proposed a novel SMC algorithm optimizing torque response and 
efficiency. Conventional DTC and sliding-modes are combined in [6]. Integral 
nested SM controller is applied to IM in [8], [17] also for sensorless drives [1], [2]. 
Low and zero-speed action is concerned in [4], [9]. The exponential approach law 
is introduced in [13]. Second order sliding-mode, so called twisting algorithm, can 
be also used in IM drives [19]. 
 This paper presents conventional Direct Torque Control taking advantage of 
sliding-modes, however it compares two possible control strategies assuring motor 
flux stabilization. Both stator and rotor fluxes can be stabilized, and these two 
possibilities are investigated and compared. The similarities and differences 
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between those two methods are shown. Simulation and experimental results are 
presented to verify the analyzed algorithms. 
 

2. The control strategy – theoretical basics 
 
 In order to control a specific plant, like the induction motor drive, the control 
basics for the general plant should now be introduced. The SMC, as one of the 
algorithmic control strategies, requires the plant mathematical model knowledge. 
This model can be described by the commonly-known state equation: 

),( kxx f            (1) 
where: x, k – state variables and control signal vectors. The letter k appears here to 
distinguish the common control signal symbol from the motor voltage vector signal u. 
 The next step in the control algorithm design [14] is to choose so-called 
switching function vector, which can be formulated as: 

T
Nsss ],...,,[ 21s           (2) 

where: N – the number of available control signals. 
 If the vector s is chosen so that its desired value is zero, the negative value of 
the derivative of the positive Lapunov function ensures the asymptotic convergence 
of switching function vector. The Lapunov standard function takes the form: 

0
2
1

 ssTL           (3) 

and its derivative:  
0 ss  TL            (4) 

 It is important, at this point, to divide the derivative (4) into two parts, one 
dependent and one independent on the control signal, k: 

 Dkfs  TL           (5) 
If the control law is assumed: 

Dss*s*k TT  ,)sign(         (6) 
the Lapunov function derivative can be expressed as follows: 

*sfss**sfs  TTTL )sign(        (7) 

where: 0)3(*)2(*)1(*  sss*s . 

If the term *s  is high enough, the control purpose, i.e. zero convergence of 
switching functions (2) is fulfilled: 

1

0
1 


Df

Dsfs*sfs TTT

        (8) 

 The control law (6), with the usage of the sign function, means that the control 
signals k=[k1,k2,…kN]T

 will only take two signal states, i.e. ±1. This situation, 
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natural for the modern induction motor drives fed from the voltage-source inverter, 
will be described in next paragraph. 
 

3. Mathematical model of the converter-supplied induction motor 
 
 The power supply chain, commonly found in industrial applications consists of 
the rectifier, the voltage-source inverter (VSI) and the induction motor. These three 
elements are presented in Fig. 1.  
 

A

B

C

du

Ak CkBk

N
1L
2L
3L

IMVSIAC/DC

 
Fig. 1. The induction motor fed from the voltage-source inverter 

 
The rectifier converts the alternating current (AC) into a direct current (DC) and 

the ud signal can be assumed as its output. This signal needs to be measured, when 
the phase voltage values are needed: 
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where: k=[kA,kB,kC]T – the VSI control signals, that become 1 when the specific 
phase is connected to the positive voltage, and -1 otherwise.  
 The conventional induction motor mathematical model will be developed using 
voltage vector in the stationary reference frame: 
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When the SMC algorithm is concerned another matrix is essential: 
αβABCTTT           (11) 
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The last part of the presented power supply chain is the squirrel-cage induction 
motor, which can be described using the well-known space-vector equations 
expressed in the stationary frame and per unit [p.u.] system [7]: 
– voltage and flux equations: 

srr
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rrr

sss

iiψ
iiψ

ψψi0

ψiu

mr
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Ns

xx
xx

j
dt
dTr

dt
dTr
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         (12) 

– equation of motion: 

 
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(13) 

where: 
  rrrrssssss jjiijjiijuu  rrsss ψiψi,u ,,,  – 

space vectors of stator voltage, current and flux, rotor flux and current, 
respectively, Mmrrss Txxrxr ,,,,, – induction motor parameters, stator and rotor 
winding resistances, reactances, magnetizing reactance and mechanical time 
constant, oem mm ,, – motor speed and torque, load torque, respectively, 

  rsmsNsNN xxxHzffT 21,50,21   . 
 

4. SMC application to induction motor drives 
 
 Taking into consideration the SMC algorithm presented in paragraph 2, the first 
step – the deriving of the specific plant mathematical model is now finished, and 
presented in previous paragraph.  
 The second step – the switching functions selection must be now considered [5]. 
There are three control signals, therefore three switching functions are available: 

 Tsss 321 ,,s           (14) 
 Although sliding-mode theory allows to control motor position, speed or its 
torque, the goal of this paper is to control the last of them, and thus the first 
switching function is: 

e
ref
e mms 1           (15) 

where: ref
em – torque reference value. 
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 The motor can be controlled using the constant flux strategy, so the second 
switching function must be related to the flux; it can be both stator or rotor flux: 

   r
ref
rr

ref
rr

s
ref
ss

dt
dTs

s




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2

22
2 )(

       (16) 

where: T  – flux control time constant, ref
r

ref
s  , – stator and rotor flux reference 

values. 
 The third and last switching function can be the one providing the 3-phase 
voltage symmetry: 

   dtkkks CBA3          (17) 
 For these switching functions the matrix D, necessary in the SMC control law 
application (6) is as follows: 
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where: 22
  rrr   – rotor flux amplitude.  

Matrices D1s, D1r can be obtained substituting (15)-(17) into Lapunov derivative 
equation (4), (5). The f vectors, reminding after dividing the derivative of s into 
two parts (5) are presented in the Appendix 1. 
 The second switching function forms (16) directly depend on the above-
mentioned division to f and D matrices. The s2s form without raising to the power 
of two, and the s2r form without the differential part do not allow to realize this 
division, and thus the D matrix cannot be derived. 
 The block diagram of the SMC structure for IM drive is presented in Fig. 2. The 
sliding-mode controller, relying on the information of the flux and torque errors, 
flux vector components (or its amplitude and angle), and additionally stator current 
vector, changes the control signals, i.e. transistor switches. Fluxes and torque can 
be calculated by one of many existing estimators [7] using the information about 
motor phase currents, voltages and speed. The phase voltages are calculated by (9)-
(10), taking the advantage of ud and kA, kB, kC. When there is a necessity of 
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achieving speeds greater than the nominal value, the field weakening strategy must 
be applied. 

 
 

Fig. 2. The block diagram of the direct torque SMC structure 
 

5. Simulation results 
 
 Presented above theoretical considerations are proved with simulation tests. All 
transients are obtained using the Matlab/Simulink software, with the fixed-step Euler 
method, the sampling time is 1e-6 s. The rectifier and the VSI are assumed to be ideal, 
i.e. the direct voltage ud is constant and there is no dead-time effect in the VSI 
operation. The induction motor model is formed using equations (12)-(13). Its 
parameters and nominal values are presented in Appendix 2. It is assumed that the 
flux and torque estimator works properly (Fig. 2). 
 The drive perfect operation for control with constant stator flux is shown in Fig. 3 It 
can be noticed that the reference motor torque value is achieved almost immediately 
and stator flux is kept constant on the desired nominal level. The reference torque 
square wave amplitude is its nominal value (see Appendix 2). Shape of the speed 
transient is triangular, due to the applied torque signal. 
 In Fig. 4 the SMC with constant rotor flux can be seen. The reference torque 
square wave is identical to the previous one. Likewise for the control with constant 
stator flux, the system dynamic behaviour is distinguished. Three different 
transients are shown for three different flux settling time constants Ts: 0.01s, 0.05s 
and 0.1s (where Ts=3T). The torque transients differ only at the beginning, and 
therefore its zoom is shown. The speed transients are almost identical. 
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Fig. 3. Sliding-mode control of the induction motor with stator flux stabilization, simulation results 
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Fig. 4. Sliding-mode control of the induction motor with rotor flux stabilization, simulation results 
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 The parameter sensitivity tests were performed next, and the exemplary 
transient is shown in Fig. 5. Parameters used by the control system (superscript 
SMC) were changed in relation to real motor parameters (R). The situation with a 
parameter mismatch was simulated. Parameters were changed in the following 
way: ,5.2 R

s
SMC

s rr   ,5.0 R
s

SMC
s xx    ,5.0 R

r
SMC

r rr   ,5.2 R
r

SMC
r xx    

R
m

SMC
m xx 5.1 . Comparison of the transient from Fig. 5b with the one from Fig. 5a, 

proves that the SMC algorithm is insensitive to all motor parameters mismatch. 
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Fig. 5. Parameter sensitivity comparison, a) nominal parameters, b) parameters mismatch: 
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6. Experimental results 

 
 A number of experimental tests were performed in order to verify presented 
theoretical considerations. The Sliding-Mode Control algorithms were 
implemented in dSpace 1104 card using the dSpace software. The tests were 
performed with the sampling time s. The schematic diagram of a laboratory set-
up is presented in Fig. 6.  
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Fig. 6. Experimental set-up 
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 The set-up consists of the 1.5kW induction motor fed from the VSI. The load torque 
is provided by the DC machine. Whole control process is supervised by the dSpace 1104 
card. Motor speed is measured by the incremental encoder (4096 imp./rev.). 
 Both control methods, with stator and rotor flux stabilization, were tested. 
Experimental transients for the first method are presented in Fig. 7, for the second 
method in Fig. 8, respectively. In both cases the flux vectors were estimated by 
commonly used simulators [7]; the stator flux vector was estimated by the voltage-
based simulator and the rotor flux – by the current-based simulator. 
 Both control methods give almost the same results. In Fig. 7 and Fig. 8 a superb 
control system performance can be seen. Reference torque values are achieved 
almost immediately. One of the differences is that rotor flux oscillations are 
smaller then in stator flux signal. Speed signal is triangular due to the applied 
motor torque signal shape. 
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Fig. 7. SMC with stator flux stabilization, experimental results 
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Fig. 8. SMC with rotor flux stabilization, experimental results 

 
7. Conclusion 

 
 In the paper the Direct Torque Sliding Mode Control is presented. The two 
possible control strategies are compared – one that allows to keep stator flux 
constant and the second one for rotor flux. Simulation and experimental test were 
performed to verify described algorithms. Both control strategies give almost the 
same results – motor torque is controlled ideally, the reference value is achieved 
almost immediately and the flux is kept constant. The only difference, noticeable 
during experimental tests, are smaller flux oscillation for drive system operation 
with stabilisation of the rotor flux. 
 

Appendix 1 
 

The f vectors reminding after the derivative of s division (5) will be presented 
here, respectively for constant stator flux control: 
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and for control with constant rotor flux: 
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Appendix 2 

 
 Induction motor (Indukta Sh90 L-4) parameters and its nominal values are 
presented in Table 1 and Table 2, respectively. 
 

Table 1. Parameters of the IM equivalent circuit 
 

Rs Rr Xs Xr Xm 
     

 

4.8431 6.57 84.9 84.9 81.4 [] 
0.0737 0.10 1.29 1.29 1.239 [p.u] 

 
 Mechanical time constant of the drive: TM=0.2s 
 

Table 2. Motor nominal values 
 

Power Torque Speed Voltage Current Frequency Stator 
flux 

Rotor 
flux 

PN MN nN UsN IsN fsN sN rN 

[kW] [Nm] [rpm] [V] [A] [Hz] [Wb] [Wb] 

1.5 10.2 1410 230 3.5 50 1.135 1.087 
[physical 

units] 

0.62 0.6608 0.94 0.707 0.707 1 1.096 1.049 [p.u.] 
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