PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fluoride removal from groundwater by technological process optimization

Identyfikatory
Warianty tytułu
PL
Optymalizacja procesów technologicznych usuwania fluoru z wód podziemnych
Języki publikacji
EN
Abstrakty
EN
Fluoride removal from aqueous solutions was studied using nanofiltration and sorption techniques which have always been best key ways to deal with water contaminated by fluoride. In this presented work, we were firstly interested on fluoridated rejected water overcoming the drawback of RO membrane process of groundwater treatment plant in Baltic region (Kretinga, Lithuania). Opoka sorbent has shown effective results of fluoride sorption with efficiency higher than 77 %. In order to understand the sorption phenomenon and to validate the results obtained, we have applied experimental data on Freundlich and Langmuir isotherms which allow us to determine isotherms parameters (KF; 1/n and KL; qmax) and to confirm the experiment. Because of the unacceptable tariff of drinking water treated by RO, defluoridation with nanofiltration method is proposed in this study as a solution which can replace reverse osmosis technique. For that, tests of nanofiltration for fluoride removal were carried out at laboratory scale by using nanofiltration flat sheet membranes (NF270 and NF90).
Rocznik
Strony
133--147
Opis fizyczny
Bibliogr. 47 poz., rys., wykr., tab., fot.
Twórcy
  • Department of Environment Protection and Water Management, Vilnius Gediminas Technical University, Sauletekio ave. 11, Vilnius, LT-10223, Lithuania, phone +37061653746
  • Department of Building Materials and Fire Safety, Vilnius Gediminas Technical University, Sauletekio ave. 11, Vilnius, LT-10223, Lithuania, phone +37063189130
  • Laboratory of Applied Chemistry, Faculty of Science and Technology, Sidi Mohammed Ben Abdellah University, P.O. Box 2202, Fez, Morocco
Bibliografia
  • [1] Fawell J, Bailey K, Chilton J, Dahi E, Fewtrell L, Magara Y. Fluoride in Drinking-water. World Health Organization; 2006. https://www.who.int/water_sanitation_health/publications/fluoride_drinking_water_full.pdf.
  • [2] Mohapatra M, Anand S, Mishra BK, Giles Dion E, Singh P. Review of fluoride removal from drinking water. J Environ Manage. 2009;91:67-77. DOI: 10.1016/j.jenvman.2009.08.015.
  • [3] Azbar N, Turkman A. Defluoridation in drinking waters. Water Sci Technol. 2000;42:403-407. DOI: 10.2166/wst.2000.0346.
  • [4] Ayoob S, Gupta AK. Fluoride in drinking water: a review on the status and stress effects. Crit Rev Environ Sci Technol. 2006;36:433-487. DOI: 10.1080/10643380600678112.
  • [5] Vithanage M, Bhattacharya P. Fluoride in the environment: sources, distribution and defluoridation. Environ Chem Lett. 2015;13:131-147. DOI: 10.1007/s10311-015-0496-4.
  • [6] Wang W, Li R, Tan J, Luo K, Yang L, Li H, et al. Adsorption and leaching of fluoride in soils of China. Fluoride. 2002;35(2):122-129. ISSN: 0015-4725.
  • [7] Agarwal M, Rai K, Shrivastav R, Dass S. Defluoridation of water using amended clay. J Cleaner Products. 2003;11:439-444. DOI: 10.1016/j.arabjc.2014.06.005.
  • [8] Chaudhary V, Satheeshkumar S. Assessment of groundwater quality for drinking and irrigation purposes in arid areas of Rajasthan, India. Appl Water Sci. 2018;8:218. DOI: 10.1007/s13201-018-0865-9.
  • [9] Petersen PE, Aleksejuniene J, Christensen LB, Eriksen HM, Kalo I. Oral health behavior and attitudes of adults in Lithuania. Acta Odontol Scand. 2000;58:243-248. DOI: 10.1080/00016350050217073.
  • [10] Menkouchi Sahli MA, Annouar S, Tahaikt M, Mountadar M, Soufiane A, Elmidaoui A. Fluoride removal for underground brackish water by adsorption on the natural chitosan and by electrodialysis. Desalination. 2007;212:37-45. DOI: 10.1016/j.desal.2006.09.018.
  • [11] Msonda KWM, Masamba WRL, Fabiano E. A study of fluoride groundwater occurrence in Nathenje, Lilongwe, Malawi. Phys Chem Earth. 2007;32:1178-1184. DOI: 10.1016/j.pce.2007.07.050.
  • [12] Rao N. Fluoride in groundwater, Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India. Environ Monit Assess. 2009;152:47-60. DOI: 10.1007/s10661-008-0295-5.
  • [13] Wang GQ, Huang YZ, Xiao BY, Qian XC, Yao H, Hu Y, et al. Toxicity from water containing arsenic and fluoride in Xinjiang. Fluoride. 1997;30:81-84. ISSN: 0015-4725.
  • [14] Neuhold JM, Sigler WF. Effects of sodium fluoride on carp and rainbow trout. Trans Am Fish Soc. 1960;89:358-370. DOI: 10.1577/1548-8659(1960)89[358:EOSFOC]2.0.CO;2.
  • [15] Colombani N, Kebede S, Salemi E, Mastrocicco M. Recognition of the anthropogenic contribution to the input of fluoride in urban recharge. Environ Earth Sci. 2018;77:390-399. DOI: 10.1016/j.gexplo.2018.04.008.
  • [16] Peckham S, Awofeso N. Water Fluoridation: A critical review of the physiological effects of ingested fluoride as a public health intervention. Sci World J. 2014;9:1-10. DOI: 10.1155/2014/293019.
  • [17] Pontie M, Diawara C, Lhassani A, Dach H, Rumeau M, Buisson H, et al. Chapter 2 water defluoridation processes: A review application: nanofiltration (NF) for future large-scale pilot plants. Adv Fluorine Sci. 2006;2:49-80. DOI: 10.1080/19443994.2012.704715.
  • [18] Wasana HM, Aluthpatabendi D, Kularatne WM, Wijekoon P, Weerasooriya R, Bandara J. Drinking water quality and chronic kidney disease of unknown etiology (CKDu): synergic effects of fluoride, cadmium and hardness of water. Environ Geochem Health. 2016;38(1):157-168. DOI: 10.1007/s10653-015-9699-7.
  • [19] Saucedo-Delgado BG, De Haro-Del Rio DA, González-Rodríguez LM, Reynel-Ávila HE, Mendoza-Castillo DI, Bonilla-Petriciolet A, et al. Fluoride adsorption from aqueous solution using a protonated clinoptilolite and its modeling with artificial neural network-based equations. J Fluorine Chem. 2017;204:98-106. DOI: 10.1016/j.jfluchem.2017.11.002.
  • [20] Silveira C, Shimabuku QL, Fernandes Silva M, Bergamasco R. Iron-oxide nanoparticles by the green synthesis method using Moringa oleifera leaf extract for fluoride removal. Environ Technol. 2018;39(22):2926-2936. DOI: 10.1080/09593330.2017.1369582.
  • [21] Mullick A, Neogi S. Ultasound assisted synthesis of Mg-Mn-Zr impregnated activated carbon for effective fluoride adsorption from water. Ultrasonics - Sonochemistry. 2019;50:126-137. DOI: 10.1016/j.ultsonch.2018.09.010.
  • [22] Xu L, Gao X, Li Z, Gao C. Removal of fluoride by nature diatomite from high-fluorine water: an appropriate pretreatment for nanofiltration process. Desalination. 2015;369:97-104. DOI: 10.1016/j.desal.2015.04.033.
  • [23] Dolar D, Košutić K, Vučić B. RO/NF treatment of wastewater from fertilizer factory - removal of fluoride and phosphate. Desalination. 2011;265:237-241. DOI: 10.1016/j.desal.2010.07.057.
  • [24] Jadhav SV, Gadipelly CR, Marathe KV, Rathod VK. Treatment of fluoride concentrates from membrane unit using salt solutions. J Water Process Eng. 2014;2:31-36. DOI: 10.1016/j.jwpe.2014.04.00.
  • [25] Reardon E, Wang Y. A limestone reactor for fluoride removal from wastewaters. Environ Sci Technol. 2000;34:3247-3253. DOI: 10.1021/es990542k.
  • [26] Mulugeta E, Zewge F, Chandravanshi BS. Development of a household water defluoridation process using aluminium hydroxide based adsorbent. Water Environ Res. 2015;87(6):524-532. DOI: 10.2175/106143014X13975035525627.
  • [27] Pontie M, Dach H, Lhassani A, Diawara CK. Water defluoridation using nanofiltration vs. reverse osmosis: the first world unit, Thiadiaye (Senegal). Desalin Water Treat. 2012;51:164-168. DOI: 1080/19443994.2012.704715.
  • [28] Chakrabortty S, Roy M, Pal P. Removal of fluoride from contaminated groundwater by cross flow nanofiltration: transport modeling and economic evaluation. Desalination. 2013;313:115-124. DOI: 10.1016/j.desal.2012.12.021.
  • [29] Shen J, Richards BS, Schäfer AI. Renewable energy powered membrane technology: case study of St. Dorcas Borehole in Tanzania demonstrating fluoride femoval via nanofiltration/reverse osmosis. Sep Purif Technol. 2016;170:445-452. DOI: 10.1016/j.seppur.2016.06.042.
  • [30] Elazhar F, Tahaikt M, Zouahri A, Taky M, Hafsi M, Elmidaoui A. Defluoridation of Moroccan groundwater by nanofiltration and electrodialysis: performances and cost comparison. World Appl Sci J. 2013;22(6):844-850. DOI: 10.5829/idosi.wasj.2013.22.06.268.
  • [31] Smittakorn S, Jirawongboonrod N, Mongkolnchai-arunya S, Durnford D. Homemade bone charcoal adsorbent for defluoridation of groundwater in Thailand. J Water Health. 2010;8(4):826-836. DOI: 10.2166/wh.2010.131.
  • [32] Ramdani A, Taleb S, Benghalem A, Ghaffour N. Removal of excess fluoride ions from Saharan brackish water by adsorption on natural materials. Desalination. 2010;250:408-413. DOI: 10.1016/j.desal.2009.09.066}.
  • [33] Oladoja NA, Helmreich B, Bello HA. Towards the development of a reactive filter from green resource for groundwater defluoridation. Chem Eng J. 2016;301:166-177. DOI: 10.1016/j.cej.2016.04.150.
  • [34] Tang Y, Guan X, Wang J, Gao N, McPhail MR, Chusuei CC. Fluoride adsorption onto granular ferric hydroxide: Effects of ionic strength, pH, surface loading, and major co-existing anions. J Hazard Mater. 2009;171:774-779. DOI: 10.1016/j.jhazmat.2009.06.079.
  • [35] Lithuanian hygiene norm HN 24: 2003. Safety and quality requirements for drinking water. 2003. https://e-seimas.lrs.lt/portal/legalAct/lt/TAD/TAIS.216309.
  • [36] Brogowski Z, Renman G. Characterization of Opoka as a basis for its use in wastewater treatment. Polish J Environ Stud. 2004;13(1):15-20. WOS: 000189090000002. http://www.pjoes.com/Characterization-of-Opoka-as-a-Basis-for-its-Use-r-nin-Wastewater-Treatment-,87622,0,2.html.
  • [37] Cucarella V, Zaleski T, Mazurek R. Phosphorus sorption capacity of different types of opoka. Ann Warsaw Agricult Univ - SGGW, Land Reclam. 2007;38:11-18. https://www.researchgate.net/publication/310487634.
  • [38] Johansson L, Gustafsson JP. Phosphate removal using blast furnace slags and opoka-mechanisms. Wat Res. 2000;34(1):259-265. DOI: 10.1016/S0043-1354(99)00135-9.
  • [39] Buzaeva MV, Pis’menko VT, Klimov ES. Decomposition of coolants using modified opoka. Chem Technol Fuels Oils. 2010;46(3):160-163. DOI: 10.1007/s10553-010-0203-x.
  • [40] Wdowin M, Franus W, Panek R. Preliminary results of usage possibilities of carbonate and zeolitic sorbents in CO2 capture. Fresen Environ Bull. 2012;21(12):3726-3734. https://www.prt-parlar.de/download_feb_2012/.
  • [41] LST EN 933-2:2001. Tests for Geometrical Properties of Aggregates. Part 2: Determination of Particle Size Distribution - Test Sieves, Nominal Size of Apertures. Lithuanian Standards Board. http://lsd.lt/index.php?1416447412.
  • [42] Tomczak E, Blus M. Characteristics of polymeric ultrafiltration membranes produced with the use of graphene oxide. Ecol Chem Eng S. 2018;25(3):419-429, DOI: 10.1515/eces-2018-0029.
  • [43] Chung HK, Kim WH, Park J, Cho J, Jeong TY, Park PK. Application of Langmuir and Freundlich isotherms to predict adsorbate removal efficiency or required amount of adsorbent. J Ind Eng Chem. 2015;28:241-246. DOI: 10.1016/j.jiec.2015.02.021.
  • [44] Pontie M, Dach H, Leparc J, Hafsi M, Lhassani A. Novel approach combining physico-chemical characterizations and mass transfer modelling of nanofiltration and low pressure reverse osmosis membranes for brackish water desalination intensification. Desalination. 2008;221:174-191. DOI: 10.1016/j.desal.2007.01.075.
  • [45] Johnson D, Hilal N. Characterisation and quantification of membrane surface properties using atomic force microscopy: A comprehensive review. Desalination. 2015;356:149-164. DOI: 10.1016/j.desal.2014.08.019.
  • [46] Kelewou H, Lhassani A, Merzouki M, Drogui P, Sellamuthu B. Salts retention by nanofiltration membranes: Physicochemical and hydrodynamic approaches and modeling. Desalination. 2011;277:106-112. DOI: 10.1016/j.desal.2011.04.010.
  • [47] Lhassani A, Rumeau M, Benjelloun D, Pontie M. Selective demineralization of water by NF, application to the defluorination of brackish water. Water Res. 2001;35:3260-3264. DOI: 10.1016/S0043-1354(01)00020-3.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c957edbe-cc07-46bc-96d5-cec16b1c9c0b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.