Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper addresses the problem of selecting a cloud infrastructure configuration for a geo-distributed enterprise. It extends the well-known virtual machine (VM) placement problem to consider multiple datacenters so they can serve a distribution of end-users in their geographic locations in an optimal way in terms of low end-user latency, and acceptable costs. We approach this problem by formulating a multi-criteria mixed integer linear program (MILP) that integrates an aspiration/reservation-based modeling of the client’s preferences. A newly proposed model supports the selection of virtual in-stances across cloud regions, ensuring flexible trade-offs among QoS objectives: total infrastructure cost, user distance, and edge-to-central latency. Case study results based on Google datacenters in Europe demonstrate the flexibility of our method in providing Pareto-optimal solutions aligned with varied preferences. The approach contributes to the growing preference-aware cloud resource allocation field and offers a scalable solution to the service composition problem in heterogeneous cloud environments.
Rocznik
Tom
Strony
29
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technology, Poland
autor
- Warsaw University of Technology, Poland
Bibliografia
- [1] R. Buyya, C. Vecchiola, and S. T. Selvi, Mastering cloud computing: foundations and applications programming. Newnes, 2013. [Online]. Available: https://dl.acm.org/doi/book/10.5555/2531413
- [2] V. Hayyolalam and A. A. P. Kazem, “A systematic literature review on qos-aware service composition and selection in cloud environment,” Journal of Network and Computer Applications, vol. 110, pp. 52-74, 2018. [Online]. Available: https://doi.org/10.1016/j.jnca.2018.03.003
- [3] A. Jula, E. Sundararajan, and Z. Othman, “Cloud computing service composition: A systematic literature review,” Expert Systems with Applications, vol. 41, no. 8, pp. 3809-3824, 2014. [Online]. Available: https://doi.org/10.1016/j.eswa.2013.12.017
- [4] O. Afolalu, “Enterprise Networking Optimization : A Review of Challenges, Solutions, and Technological Interventions,” Future Internet, vol. 17, no. 133, pp. 1-21, 2025. [Online]. Available: https://doi.org/10.3390/fi17040133
- [5] M. Malekimajd, A. Movaghar, and S. Hosseinimotlagh, “Minimizing latency in geo-distributed clouds,” The Journal of Supercomputing, vol. 71, no. 12, pp. 4423-4445, 2015. [Online]. Available: https://doi.org/10.1007/s11227-015-1538-1
- [6] H. Talebian, A. Gani, M. Sookhak, A. A. Abdelatif, A. Yousafzai, A. V. Vasilakos, and F. R. Yu, “Optimizing virtual machine placement in IaaS data centers: taxonomy, review and open issues,” Cluster Computing, vol. 23, pp. 837-878, 2020. [Online]. Available: https://doi.org/10.1007/s10586-019-02954-w
- [7] A. Berenberg and B. Calder, “Deployment archetypes for cloud applications,” ACM Computing Surveys (CSUR), vol. 55, no. 3, pp. 1-48, 2022. [Online]. Available: https://doi.org/10.1145/3498336
- [8] M. Ciavotta, G. P. Gibilisco, D. Ardagna, E. D. Nitto, M. Lattuada, and M. A. A. da Silva, “Architectural design of cloud applications: A performance-aware cost minimization approach,” IEEE Transactions on Cloud Computing, vol. 10, no. 3, pp. 1571-1591, 2022. [Online]. Available: https://doi.org/10.1109/TCC.2020.3015703
- [9] W. Attaoui and E. Sabir, “Multi-criteria virtual machine placement in cloud computing environments: a literature review,” in 2024 International Conference on Ubiquitous Networking (UNet), vol. 10. IEEE, 2024, pp. 1-11. [Online]. Available: https://doi.org/10.1109/UNet62310.2024.10794708
- [10] S. Rawas, A. Zekri, and A. El-Zaart, “LECC: Location, energy, carbon and cost-aware VM placement model in geo-distributed DCs,” Sustainable Computing: Informatics and Systems, vol. 33, p. 100649, 2022. [Online]. Available: https://doi.org/10.1016/j.suscom.2021.100649
- [11] A. Alashaikh, E. Alanazi, and A. Al-Fuqaha, “A survey on the use of preferences for virtual machine placement in cloud data centers,” ACM Computing Surveys (CSUR), vol. 54, no. 5, pp. 1-39, 2021. [Online]. Available: https://doi.org/10.1145/3450517
- [12] H. Ziafat and S. M. Babamir, “A method for the optimum selection of datacenters in geographically distributed clouds,” The Journal of Supercomputing, vol. 73, no. 9, pp. 4042-4081, 2017. [Online]. Available: https://doi.org/10.1007/s11227-017-1999-5
- [13] M. Whaiduzzaman, A. Gani, N. B. Anuar, M. Shiraz, M. N. Haque, and I. T. Haque, “Cloud Service Selection Using Multicriteria Decision Analysis,” The Scientific World Journal, vol. 2014, no. 1, p. 459375, 2014, eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1155/2014/459375. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1155/2014/459375
- [14] A. P. Wierzbicki, Reference Point Approaches. Boston, MA: Springer US, 1999, pp. 237-275. [Online]. Available: https://doi.org/10.1007/978-1-4615-5025-9_9
- [15] M. Kaleta, W. Ogryczak, E. Toczyłowski, and I. Zoltowska, “On Multiple Criteria Decision Support for Suppliers on the Competitive Electric Power Market,” Annals of Operations Research, vol. 121, no. 1-4, pp. 79-104, 2003. [Online]. Available: https://doi.org/10.1023/A:1023351118725
- [16] I. Zoltowska, “Risk preferences of ev fleet aggregators in day-ahead market bidding: Mean-cvar linear programming model,” Energies, vol. 18, no. 1, p. 93, 2024. [Online]. Available: https://doi.org/10.3390/en18010093
- [17] K. Sumalatha and M. S. Anbarasi, “A review on various optimization techniques of resource provisioning in cloud computing.” International Journal of Electrical & Computer Engineering (2088-8708), vol. 9, no. 1, 2019. [Online]. Available: http://doi.org/10.11591/ijece.v9i1.pp629-634
- [18] C. Kumar, “How much is Google Cloud Latency (GCP) between Regions? — geekflare.com,” https://geekflare.com/cloud/google-cloud-latency/, [Accessed 18-04-2025].
- [19] Google, “Gcp pricing,” https://cloud.google.com/compute/all-pricing?hl=pl#section-1, [Accessed 18-04-2025].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9562a49-677d-4434-a39e-35797cfaf6e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.