Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Toluene, a hydrocarbon frequently found in water due to human activities and accidents like oil spills, can pose health risks, such as nervous system irritation and liver lesions. This study aimed to develop cost-effective adsorption techniques using activated carbon from corn biomass to remove toluene from water. The activated carbon, synthesized with zinc chloride surface modification and carbonization, was tested in a continuous fluidized bed column. The adsorbents effectively removed toluene, with optimal conditions identified as a bed height of 10 cm, a temperature of 30 °C, and a flow rate of contaminated water at 15 L/h. Operational parameters, like flow rates (15–25 l/h), bed heights (6–10 cm), and temperature (30–40 °C), were varied to assess their impact on toluene adsorption efficiency. Increasing flow rate and temperature reduced toluene removal, while higher bed height improved removal efficiency. However, column adsorption showed lower efficacy due to limited access of adsorbates to surface sites caused by low retention times within the column. On the basis of the breakthrough curve of 0.2 mm AC particles, the maximum adsorption capacity for toluene was 0.15643 mg/g with a total removal efficiency of 44.894%. The analysis, using various kinetic models like Thomas and Adams-Bohart, correlated strongly with the Thomas model (R2>0.89), indicating Langmuir isotherm behavior and a second-order kinetic reaction. These findings demonstrate the potential of using the activated carbon from corn biomass in adsorption processes for removing toluene from contaminated water.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
104--114
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
autor
- Chemical Engineering Department, Babylon University, Babylon, Iraq
autor
- Chemical Engineering Department, Babylon University, Babylon, Iraq
Bibliografia
- 1. Anjum, H., Johari K., Gnanasundaram N., Ganesapillai M., Arunagiri A., Regupathi I., Thanabalan M. 2019. A Review on adsorptive removal of oil pollutants (BTEX) from Wastewater using carbon nanotubes. Journal of Molecular Liquids, 277, 1005–25.
- 2. Ashour, A., Amer, M., Marzouk, A., Shimizu, K., Kondo, R., El-Sharkawy, S. 2013. Corncobs as a potential source of functional chemicals. Molecules, 18(11), 13823–30.
- 3. Bandura, L., Kołodyńska, D., Franus, W. 2017. Adsorption of BTX from aqueous solutions by Na-P1 zeolite obtained from fly ash. Process Safety and Environmental Protection, 109, 214–23.
- 4. Crini, G., Lichtfouse, E., Wilson L.D., Morin-Crini, N. 2019. Conventional and non-conventional adsorbents for wastewater treatment. Environmental Chemistry Letters, 17, 195–213.
- 5. David, E., Niculescu V.C. 2021. Volatile organic compounds (VOCs) as environmental pollutants: occurrence and mitigation using nanomaterials. International Journal of Environmental Research and Public Health, 18(24), 13147.
- 6. Diatta, A., Amakobo, Fike J.H., Battaglia M.L., Galbraith J.M., Baig M.B. 2020. Effects of biochar on soil fertility and crop productivity in arid regions: a review. Arabian Journal of Geosciences, 13, 1–17.
- 7. Farma, R., Fadilah R., Awitdrus, Sari, N.K., Taer, E., Saktioto., Deraman, M. 2018. Corn cob based activated carbon preparation using microwave assisted potassium hydroxide activation for sea water purification. Journal of Physics: Conference Series, 1120(1), 12017. https://doi.org/10.1088/1742-6596/1120/1/012017
- 8. Fayemiwo, O., Moothi, K., Daramola, M. 2017. BTEX compounds in water–future trends and directions for water treatment. Water Sa, 43(4), 602–13.
- 9. Gayatri, S., Ahmaruzzaman M. 2010. Adsorption technique for the removal of phenolic compounds from wastewater using low-cost natural adsorbents. Assam University Journal of Science and Technology 5(2), 156–66.
- 10. Tran, H.T, Le, A.H., Pham, T.H., Duong, L.D., Nguyen, X.C., Nadda, A.K., Chang S.W., Chung, W.J., Nguyen, D.D., Nguyen D.T. 2022. A sustainable, low-cost carbonaceous hydrochar adsorbent for methylene blue adsorption derived from corncobs. Environmental Research, 212, 113178. https://doi.org/https://doi.org/10.1016/j.envres.2022.113178
- 11. Hong, T., Wei, L., Cui, K., Dong, Y., Li, R.L., Zhang, T., Zhao, Y., Luo, L. 2021. Adsorption performance of volatile organic compounds on activated carbon fibers in a fixed bed column. Journal of Environmental Chemical Engineering, 9(6), 106347.
- 12. Yuping, H., Chu, H., Wang, D., Hui, S. 2024. Performance and mechanism of benzene adsorption on ZnCl2 one-step modified corn cob biochar. Environmental Science and Pollution Research, 31(10), 15209–22.
- 13. Iheanacho, O.C., Nwabanne, J.T., Obi, C.C. and Onu C.E. 2021. Packed bed column adsorption of phenol onto corn cob activated carbon: linear and nonlinear kinetics modeling. South African Journal of Chemical Engineering, 36, 80–93.
- 14. Jodeh, S., Ahmad, R., Suleiman, M., Radi, S., Emran, K.M., Salghi, R., Warad, I., Hadda T.B. 2015. Kinetics, thermodynamics and adsorption of BTX removal from aqueous solution via date-palm pits carbonization using SPME/GC-MS. Journal of Materials and Environmental Science 6(10), 2853–70.
- 15. Khan, A.H., López-Maldonado E.A., Alam S.S., Khan N.A., López López J.R., Herrera, P.F.M., Abutaleb, A., Ahmed, S., Singh, L. 2022a. Municipal solid waste generation and the current state of waste-to-energy potential: state of art review. Energy Conversion and Management 267, 115905.
- 16. Khan, Afzal Husain, Eduardo Alberto López-Maldonado, Nadeem A Khan, Luis Jesús Villarreal-Gómez, F., Munshi M., Alsabhan A.H., Perveen, K. 2022b. Current solid waste management strategies and energy recovery in developing countries-state of art review. Chemosphere 291, 133088.
- 17. Khan, A., Kanwal, H., Bibi, S., Mushtaq, S., Khan, A., Khan, Y.H., Mallhi T.H. 2021. Volatile organic compounds and neurological disorders: from exposure to preventive interventions. In Environmental Contaminants and Neurological Disorders, 201–30. Springer.
- 18. Kong, H., Mat, H. Yunus M.A.C. 2020. Batch adsorptive removal of btex from aqueous solution: A Review BT - Proceedings of the Third International Conference on Separation Technology 2020 (ICoST 2020). In: 303–318. Atlantis Press. https://doi.org/10.2991/aer.k.201229.040
- 19. Li, X., Zhang, L., Yang, Z., Wang, P., Yan, Y., Ran, J. 2020. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: a review. Separation and Purification Technology, 235, 116213.
- 20. Liang, M, He, M., Fu, P., Jiang, X., Lv, W., Huang, Y., Liu, Y., Wang H. 2020. Adsorption of volatile organic compounds on modified spherical activated carbon in a new cyclonic fluidized bed. Separation and Purification Technology, 235, 116146.
- 21. Marcińczyk, M., Ok., Y.S., Oleszczuk P. 2022. From waste to fertilizer: nutrient recovery from wastewater by pristine and engineered biochars. Chemosphere, 306, 135310.
- 22. Mutia, M., Putra, A. 2019. Preparation and characterization of activated carbon from waste of corn cob (zea mays). International Jaournal Of Scientific Research And Engineering Development, 2.
- 23. Medhat, A., El-Maghrabi H.H., Abdelghany A., Menem, N.M.A., Raynaud, P., Moustafa, Elsayed., Mohamed A.A., Nada, A. 2021. Efficiently activated carbons from corn cob for Y.M. methylene blue adsorption. Applied Surface Science Advances, 3, 100037.
- 24. Liang, M., Qiao M., Zhang, Q., Xu, S., Wang D. 2024. Study on the dynamic adsorption and recycling of phosphorus by Fe–Mn oxide/mulberry branch biochar composite adsorbent. Scientific Reports, 14(1), 1235.
- 25. Melaphi, K., Sadare O.O., Simate, G.S., Wagenaar, S., Moothi K. 2023. Adsorptive removal of BTEX compounds from wastewater using activated carbon derived from macadamia nut shells. Water SA, 49(1), 36–45.
- 26. Mohammadi, L., Rahdar, A., Bazrafshan, E., Dahmardeh H., Susan M.A.B.H., Kyzas, G.Z. 2020. Petroleum hydrocarbon removal from wastewaters: a review. Processes, 8(4), 447.
- 27. Mohit N. 2018. Facile synthesis of activated carbon from cellulose in the presence of air for ammonia recovery in resource-constrained settings.
- 28. Neme, I., Gonfa G., Masi Ch. 2022. Activated carbon from biomass precursors using phosphoric acid: a review. Heliyon, 8(12).
- 29. Rouf, Z., Dar I.Y., Javaid M., Dar, M.Y., Jehangir A. 2022. Volatile organic compounds emission from building sector and its adverse effects on human health. Ecological and Health Effects of Building Materials, 67–86.
- 30. Sen, T.K. 2017. Air, gas, and water pollution control using industrial and agricultural solid wastes adsorbents. CRC Press.
- 31. Somma, S., Reverchon, E., Baldino L. 2021. Water purification of classical and emerging organic pollutants: an extensive review. ChemEngineering, 5(3), 47.
- 32. Song, M., Jin, B., Xiao, R., Yang, L., Wu, Y., Zhong, Z., Huang Y. 2013. The comparison of two activation techniques to prepare activated carbon from corn cob. Biomass and Bioenergy, 48, 250–56. https://doi.org/https://doi.org/10.1016/j.biombioe.2012.11.007
- 33. Surkatti, R., Ibrahim, M.H., El-Naas M.H. 2021. Date pits activated carbon as an effective adsorbent for water treatment. In Sorbents Materials for Controlling Environmental Pollution, 135–61. Elsevier. https://doi.org/10.1016/B978-0-12-820042-1.00007-9
- 34. Tebbutt, T., Yelland H. 2013. Principles of water quality control. Elsevier.
- 35. Tofan, L., Suteu D. 2023. Renewable resource biosorbents for pollutant removal from aqueous effluents in column mode. Separations, 10(2), 143.
- 36. Tursi, A., Chidichimo, F., Bagetta, R., Beneduci A. 2020. BTX removal from open aqueous systems by modified cellulose fibers and evaluation of competitive evaporation kinetics. Water. https://doi.org/10.3390/w12113154
- 37. Villabona-Ortíz, A., Tejada-Tovar, C., Ortega-Toro, R., Peña-Romero, K., Botello-Urbiñez C. 2022. Impact of temperature, bed height, and particle size on Ni(II) removal in a continuous system: modelling the break curve. Journal of Water and Land Development, 257–64.
- 38. Viviani, A., Yanopa S. 2023. The The Use of activated charcoal from corn cobs as adsorbent of heavy metals from groundwater. Revista brasileira de engenharia de biossistemas 17.
- 39. Yaashikaa, P.R., Kumar P.S., Varjani S., Saravanan A. 2020. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, 28, e00570.
- 40. Yahya, M.A., Mansor, M.H., Wan Zolkarnaini, W.A.A., Rusli, N.S., Aminuddin, A., Mohamad K., Sabhan F.A.M., Atik A.A.A., Ozair L.N. 2018. A brief review on activated carbon derived from agriculture by-product. In AIP Conference Proceedings. 1972. AIP Publishing.
- 41. Younas, F., Mustafa, A. Farooqi, Z.U.R., Wang, X., Younas, S., Mohy-Ud-Din, W., Hameed M.A., Abrar M.M., Maitlo, A.A., Noreen, S. 2021. Current and emerging adsorbent technologies for wastewater treatment: trends, limitations, and environmental implications. Water, 13(2), 215.
- 42. Yu, B,, Yuan, Z., Yu, Z., Xue-Song F. 2022. BTEX in the environment: an update on sources, fate, distribution, pretreatment, analysis, and removal techniques. Chemical Engineering Journal, 435, 134825.
- 43. Yuan, Peng., Jianqiao Wang., Yijun Pan., Boxiong Shen., Chunfei Wu. 2019. Review of biochar for the management of contaminated soil: preparation, application and prospect. Science of the Total Environment 659: 473–90.
- 44. Zhu, J., Li, Y., Xu, L., Liu Z. 2018. Removal of toluene from waste gas by adsorption-desorption process using corncob-based activated carbons as adsorbents. Ecotoxicology and Environmental Safety, 165, 115–25. https://doi.org/https://doi.org/10.1016/j.ecoenv.2018.08.105
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9533bfd-eb75-4c9f-bbe7-d1b1216c17e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.