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Application of Allan Variance
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Abstract—The paper presents the investigation of gyroscopic
sensor noise properties used in the construction of body position
detection device for posturographic testing. The first part shows
the sources of noise in gyro sensors and their measurement
methods. In the second part of the paper, the authors describe
their own research on the efficiency of the calculation of the Allan
variance (one of the popular noise evaluation methods) and the
wrong concept of calculations acceleration. The article concludes
with an explanation of the reasons for the lack of theoretical
research and the results of practical measurements of the sensors
used in the project.

Index Terms—Allan Variance, Gyroscope, Accelerometer,
MEMS

L INTRODUCTION

HE implementation of the "Innovative system for

evaluation and rehabilitation of human imbalance" is very
dependent on the construction of a suitable measuring system
to accurately determine the position of the human body. The
device placed on the patient should be able to monitor his
movements and thus to diagnose his condition, evaluate his
rehabilitation progress and partially prevent the patient from
falling.

The essential element of the measuring system is an inertial
system consisting of many MEMS sensors, all of which are
thermally compensated and calibrated so that the motion
readings are accurately measured in the orthogonal axis. The
built-in gyroscope measures the rotation in three axis around a
fixed point, and the three-axis accelerometer built into the
system in turn gives information about the displacement (the
acceleration in each axis). These data are sent to the
microcontroller which then analyses them. It allows to
determine, for example, the trajectory of the motion or the
position in space (relative to the starting point).

Inertial measurements have following advantages:

e they are independent of any other external support

systems;

e they can be used in tunnels and buildings;

e they are resistant to intentional or

interference.
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The most important disadvantage of inertial measuring
process is the decrease in accuracy during its duration.

For this project the accuracy of the device was estimated at
about 1 degree. This required a calibration exercise, and at the
same time a look at the problem of errors in gyro sensors and
their measurement. The authors took a closer look at the
procedure for determining Allan's variance for gyro sensors.

The article presents the work done for this purpose and the
interesting drawback of available scientific documentation
leading to completely unsuccessful attempts to improve the
calculation procedure.

II. ERRORS IN READING FROM GYROSCOPES / SOURCES
OF ERRORS IN GYROSCOPES MEASUREMENTS

The following inertial measurement errors can be
observed [3, 4]:

e constant deviation from the real value, which is an
individual characteristic of a given sensor;

e deviation that becomes different with temperature
change;

e random error associated with each launch of the sensor;

e deviations of measured values from real values,
fluctuating during measurement in an unpredictable
manner;

e Random measurement noise — possible to reduce in the
filtration process (during operation of the Kalman filter
system) or at the analysis stage after the measurement.

The MEMS gyroscope measuring angular movement has

several internal sources of error, which are manifested in the
fact that zero reading in the gyroscope will drift in time as a
result of system noise, changes in polarization voltage as well
as imperfections in its design. Repeatability of this polarization
can be achieved by calibrating the temperature range at which
the IMU is designed to operate, but the instability of this
polarization alone will result in errors in the angle
measurement. These errors will accumulate over time and will
cause a calculation error in the DSP.

In the case of accelerometers, the problem of drift and

accumulation of measurement errors does not occur, however,
these devices in turn are exposed to errors due to the vibration
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of the element or other accelerations beyond gravity. For this
type of error, the axis of rotation about the vertical axis is most
exposed, as the other two can be periodically calibrated in
relation to the gravitational field, as measured by
accelerometers. In the case of a vertical axis of rotation it cannot
be calibrated, because the rotation around this axis does not
affect the accelerated projection on the individual axis of the
accelerometer, because the rotation is about the direction of the
field.

One of the methods to eliminate the gyroscope
measurement drift is a regular calibration of zero angular
velocity for all gyro sensors in the system. Ideally, every time
it is known that the axis does not rotate, the calibration process
should zero its speed. How often this operation can be done very
strongly depends on the specific application of the system,
however, regardless of that, the system should use every 'stop'
between man steps to zero the measurement drift.

III.  APPLICATION OF ALLAN VARIANCE IN NOISE
ANALYSIS WITH COMPUTATIONAL COMPLEXITY

Variance methods of data analysis are used for the analysis
in the time domain of signal measurements from gyroscopes
and accelerometers. The Allan variance analysis is a popular
method for defining random error parameters for inertial
sensors [3, 4]. The algorithm based on this method allows to
analyse the following random errors of gyroscopes:
e bias instability;

angle random walk;
e quantization noise;
e rate random walk;
e rate ramp.

Accelerometers are subjected to a similar analysis of
random errors.

The magnitude of these errors is determined by the AV (tau)
deviation graph recorded in the static conditions of the
measured data.

In order to calculate Allan variance for gyroscopes it is
possible to use two calculation procedures:

A) based on angular values (0)
The algorithm consists of two steps:
Angle calculations based on angular velocity readings

t

o(t) = f!)(t')dt' (1)

0
Calculating Allan's variance based on angles

N-2m

1
00 = Ty 2, G~ Ween + 607

N - number of samples

M - averaging factor (t=m - 10)

Ty - sampling period

The number of floating point operations for formula (2) can
be estimated:

e for N addition operations for integration;

o for 211;]1/:21 3(m — 2N) addition operations for calculation

of Allan variance;

o for Zx/zzl N —2m multiplication
calculation of Allan variance;

The main advantage of the formula (2) is its computational

complexity at the level of n?. In practice this means that this

formula is readily used in practical calculations due to the short

calculation time even for large N values.

operations  for

B) Based on the average angular velocity (Q2)

QK(T) — 9K+m 91( (3)
T

The equation (2) connecting the angular velocity to the
angle means that the Allan variance can be calculated directly
on the basis of the average angular velocity. This solution has
similar computational complexity as the previous one but it has
very unfavorable numerical properties. The use of the
overlapping procedure (calculation of mean values over
overlapping time periods (Figure 1)) allows to solve the

problem of results instability.
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Fig. 1. Overlapping procedure [6]

The formula for calculating the variance of Allan, which
includes overlapping, has the form [5 (page 15, equation 9)]
[6 (page 4, equation 8)]:

N-2m (j+m-1

D Gem@® =@ @)

K=j

1
O = oz —2m) ;

The number of floating point operations depending on N can
be estimated at:
o for Z,’;’l/f 1 2(Nm — 2m?*) addition operations for

calculation of Allan variance;

e for Zf,/fl Nm — 2m? multiplication operations for
calculation of Allan variance;

The computational complexity of this formula is n? This
means a much worse time parameters in comparison with the
formula (2). For larger values of N (in the described tests N =
500k) the use of formula (4) becomes impossible.

An additional very adverse element of the formula (from the
implementation point of view) is the gradual increase in the
number of operations (computation time) for the subsequent
segment sizes (m). This causes great difficulties in parallel
calculations (despite the form of the formula suggesting easy
balancing) due to the proper division of tasks into individual
machines cores.
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Fig. 2. Comparison of the number of addition actions from N for both
algorithms.
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Fig. 3. Comparison of the number of multiplication operations from N for both
algorithms

In addition to the calculation of Allan variance, the authors
have developed a simple numerical method (the way of
arranging the algorithm) which significantly reduces the
number of actions performed for the formula. This led to
shortening of the calculation time to the level which is similar
to that of the procedure A. The algorithm does not affect the
results obtained in any way.

IV. METHODOLOGY OF CALCULATION ACCELERATION

Precise analysis of formula 4 shows that many operations
are repeatedly performed. The internal sum in formula 4 for the
next j differs only by two extreme values. Therefore, it is
relatively easy to convert an algorithm into one that eliminates
unnecessary operations without changing the results.

=1

e LR
sl = o= - o=y
Lol = oo

Fig. 4. Scheme for calculating further sums in formula 4.

First sum calculation
for (inti=0;i<=m-1;++) {

double temp=(x[i+m]—x[i]):
acc += temp*temp;

|

result += acc;
Following sum calculations

for (intj = 1: j < (N = 2*m); +4j) {
acc —= (x[j-1+m]—=x[j-1])*(x[j—1+m]—x[j—1]);
acc += (x[j+2*m—1]-x[j+m—-1])*(x[j+2*m—1]-x[j+m—1]);
result += acc;

}

Fig. 5. Algorithm of the modified method

In a similar way (although much less important) the
segmentation of samples can be accelerated. The new version
of the algorithm is characterized by the following number of
actions performed:

For calculation of Allan variance:

addition:
N/2
Y 2(Nm-2m’)
m=1
multiplication:
N/2
Y Nm-2m?’
m=1

It can be estimated that the time needed to complete the
calculation is proportional to the n? (number of samples).
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Fig. 6. Comparison of the number of addition operations from N for accelerated
and classical algorithms
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Fig. 7. Comparison of the number of multiplication operations from N for
accelerated and classical algorithms

3500000
number of operalion (addiion) e Cdcudatons based on averages of angular
velocity {modfied dgorythm)

= Calculations based on output angles.

3000000

2500000 -

2000000

1500000 -+

1000000 -+

500000

N
] 100 0 300 40 500 500 00 00 900 1000

Fig. 8. Comparison of the number of addition operations from N for formulas
2 and 4
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Fig. 9. Comparison of the number of multiplication operations from N for
formulas 2 and 4

Calculation time is a bit bigger than for formula 2, but the
difference is relatively small. The computational complexity of
both algorithms can be estimated as identical.

V. RESULTS

In order to verify the described concept, Allan variance
calculations (based on LSMO9DSI1 sensor readings) were
performed. The authors used a typical three-axis MEMS
gyroscope.

In order to test the concept of acceleration calculations
about 514 thousand samples were collected. Calculations were
made on a laptop with an Intel Core i7-3610QM 2.3GHz and
16GB of RAM. Table 1 shows the comparison of the
calculation times.

TABLE L.
CALCULATION TIMES
Algorithm Calculation time [s]
Calculations based on the angles (2) 283
Calculations using angular velocity without 641
overlapping
Calculations using angular velocity with 2007
overlapping (4) accelerated version
Calculations using angular velocity with ~ 600000

overlapping (4) standard version

During the work it turned out that the whole concept was
based on erroneous assumptions.

Comparison of both formulas: The formula (2) calculated
from the angles (previously calculated on the basis of angular
velocity integration) and formula (4) calculated directly on the
basis of angular velocity gave completely different results.

There are two errors in formula (4). First, at angular
velocities there should be no dashes indicating the averaging
(the internal sum is used for averaging purposes) and the second
is in the wrong place. Instead of the present sum of squares there
should be a square of sum (of course the inner). Then the inner
sum without the squares is exactly the overlapping averaging,
and the outer (squared) is the traditional formula for the Allan
variance. In the second article there is also an error with
incorrect placement of the squares.

After correcting the formula (without special effort), it is
possible to transform the equation (2) into equation (4) and both
have the same result. Nobody suspected the mistake in the
formula (4) because this formula was not used due to very long
calculation time.

The author's idea of speeding up the calculations makes
sense only with the sum of squares. In the case of a squared
sum, the only sensible approach is the prior conversion of sums
(in angles) and the use of formula (2).

Therefore, the author's proposal ceased to have any value in
terms of substance - formulas (2) and (4) are identical, give the
same result, and (2) will always be faster (number of addition
and multiplication operations are smaller.

Figures 10-12 show the results of the Allan variance
calculations using angles (2) and angular velocities without
overlapping. Measurement time was limited to 50,000 samples.
Calculations were performed for all three axes of the system.
Formulas 2 and 4 (angular velocities with overlapping) give the
same results.

1
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Fig. 10. Results of the Allan variance g, (x axis)
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Fig. 12. Results of the Allan variance g, (z axis)

VI. CONCLUSIONS

Works presented in the article were focused on two issues.
On the one hand, they concerned the evaluation of the position
detection sensor noise characteristic. The issue of noise is
particularly relevant for gyroscope sensors. The authors plan to
develop their own MEMS sensor. This means that the authors
need to carry out research to assess their own and commercial
solutions. At this stage of the work, noise characteristics of
commercial sensors were collected. They will be used to
compare it with the sensor developed by the authors. The slope
of the graphs means that the primary source of noise in a wide
frequency range is white noise.

TABLE II.
SLOPE CHART FOR EACH AXIS

Sensor axis Slope chart
X -0.48
y -0.5
z -0.5

Table 2 presents slope charts for one of five sensor units.
Obtained results show that the noise characteristic is practically
identical for all tested sensors. The second part of the research
was an observation that the methods proposed in bibliographic
sources could be optimized for computational efficiency. One
of the formulas (described as never used) has been significantly
accelerate. Unfortunately, the comparison of the results
obtained from different equations and a more accurate analysis
of the problem revealed errors in the documentation that
undermined the proposed solutions. The authors decided to

describe all the unsuccessful work motivated by a strong
emotional connection with the subject. The issue of course will
no longer be taken.
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