Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Wpływ parametrów procesu osadzania na własności ochronne powłok silanowych
Języki publikacji
Abstrakty
Chromates and phosphates have traditionally been used in order to protect metallic surfaces from corrosion processes. Due to their high toxicity and carcinogenicity, silane- based thin films are now successfully tested as an alternative pre-treatment for various metals and their alloys. The silane film deposition procedure is easy applicable by several methods such as conventional dip-coating, electro-assisted deposition, spin-coating or by spraying and wiping. The protective properties of silane film (structure, stability in time, compactness, resistance to corrosion attack) are related to the parameters of the silane solution (type of silane, composition and concentration, pH) as well as application method and drying process at a fixed temperature of the deposited film. The paper discusses the influence of the parameters of the deposition process on the protective properties of silane films.
Chromiany i fosforany były tradycyjnie stosowane w celu ochrony powierzchni metalowych przed procesami korozji. Ze względu na ich wysoką toksyczność i rakotwórczość, cienkie warstwy na bazie silanów są obecnie z powodzeniem testowane jako alternatywna obróbka wstępna różnych metali i ich stopów. Procedura osadzania filmu silanowego jest łatwa do zastosowania za pomocą kilku metod, takich jak konwencjonalne powlekanie zanurzeniowe, osadzanie elektrolityczne, powlekanie wirowe lub natryskiwanie i wcieranie. Własności ochronne powłok silanowych (struktura, stabilność w czasie, szczelność, odporność na korozję) są związane z parametrami roztworu silanu (typ silanu, skład i stężenie, pH), a także ze sposobem aplikacji i procesem suszenia w określonej temperaturze osadzanej powłoki. W artykule omówiono wpływ parametrów procesu osadzania na własności ochronne powłok silanowych.
Wydawca
Czasopismo
Rocznik
Tom
Strony
8--11
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
autor
- Institute of Materials Engineering, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Armii Krajowej Ave. 19, 42-200 Czestochowa, Poland
Bibliografia
- [1] Altmann S., J. Pfeiffer. 2003. “The Hydrolysis/condensation behaviour of methacryloyloxyalkyl functional alkoxysilanes: structure-reactivity relations”. Monatshefte für Chemie / Chemical Monthly 134 : 1081–1092.
- [2] Arkles B., Y. Pan, G. L. Larson, M.Singh. 2014. “Enhanced hydrolytic stability of siliceous surfaces modified with pendant dipodal silanes”. Chemistry A European Journal 20 : 9442 – 9450.
- [3] Asadi N., R. Naderi, M. Saremi. 2014. “Determination of optimum concentration of cloisite in an eco-friendly silane sol-gel film to improve corrosion resistance of mild steel”. Applied Clay Science 95 : 243-251.
- [4] Asadi, N., R. Naderi, M. Saremi. 2014. „Effect of curing conditions on the protective performance of an ecofriendly hybrid silane sol–gel coating with clay nanoparticles applied on mild steel”. Industrial and Engineering Chemistry 53 : 10644–10652.
- [5] Balan P., A. Ng, C. B. Siang, R.K.S. Raman, E. S. Chan. 2013. “Effect of nanoparticle addition in hybrid sol-gel silane coating on corrosion resistance of low carbon steel.” Advanced Materials Research 686 : 244-249.
- [6] Bertelsen C.M., F.J. Boerio. 2001. “Linking mechanical properties of silanes to their chemical structure: an analytical study of γ-GPS solutions and films”. Progress in Organic Coatings 41 : 239-246.
- [7] Bexell U., T.M. Grehk. 2007. “ A corrosion study of hot-dip galvanized steel sheet pre-treated with γ-mercaptopropyltrimethoxysilane”. Surface and Coatings Technology 20 : 4734- 4742.
- [8] Brochier M.-C. Salon, M.N. Belgacem. 2010. “Competition between hydrolysis and condensation reactions of trialkoxysilanes, as a function of the amount of water and the nature of the organic group”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 366 : 147–154.
- [9] Bruscioti F., A. Baparticlestan, I. De Graeve, M. Wenkin, M. Biessemans, R. Willem, F. Renies, J.J. Pireaux, M. Piens, J. Vereecken, H. Terryn. 2010. “Characterization of thin silane pre-treatments on aluminium with the incorporation of nano-dispersed CeO2”. Surface & Coatings Technology 205 : 603–613.
- [10] Cabral A. M., R.G. Duarte, M.F. Montemor, M.G.S. Ferreira. 2005. “ A comparative study on the corrosion resistance of AA2024-T3 substrates pre-treated with different silane solutions. Composition of the films formed”. Progress in Organic Coatings 54 : 322–331.
- [11] Chen S., Y. Cai, C. Zhuang, M. Yu, X. Song, Y. Zhang. 2015. ”Electrochemical behavior and corrosion protection performance of bis-[triethoxysilylpropyl] tetrasulfide silane films modified with TiO2 sol on 304 stainless steel”. Applied Surface Science 331 : 315-326.
- [12] Chico B., J. C. Galvan, D. de la Fuente, M. Morcillo. 2007. “Electrochemical impedance spectroscopy study of the effect of curing time on the early barrier properties of silane systems applied on steel substrates”. Progress in Organic Coatings 60 : 45–53.
- [13] Deflorian F., S. Rossi, L. Fedrizzi, M. Fedel. 2008. “Integrated electrochemical approach for the investigation of silane pre-treatments for painting copper”. Progress in Organic Coatings 63 : 338–344.
- [14] Ding S.Z., L.A. Liu, J.M. Hu, J.Q. Zhang, C.N. Cao. 2008. “Nitrate ions as cathodic alkalization promoters for the electro-assisted deposition of sol-gel thin films”. Scripta Materlialia 59 : 297–300.
- [15] Eichinger E, J. Osborne, T.V. Cleave. 1997. “Hexavalent chromium elimination: an aerospace industry progress report”. Metal Finishing 95 : 36-41.
- [16] Fedel M., M. Olivier, M. Poelman, F. Deflorian, S. Rossi, M.-E. Druart. 2009. “Corrosion protection properties of silane pre-treated powder coated galvanized steel”. Progress in Organic Coatings 66 : 118–128.
- [17] Flis J., M. Kanoza. 2006. “Electrochemical and surface analytical study of vinyl-triethoxysilane films on iron after exposure to air”. Electrochimica Acta 51 : 2338–2345.
- [18] Franquet A., C. Le Pen, H. Terryn, J. Vereckeen. 2003. “Effect of bath concentration and curing time on the structure of non-functional thin organosilane layers on aluminium”. Electrochimica Acta 48 : 1245-1255.
- [19] Franquet, A., H. Terryn H., J. Vereecken. 2003. “IRSE study on effect of thermal curing on the chemistry and thickness of organosilane films coated on aluminum”. Applied Surface Science. 211 : 259–269.
- [20] Gandhi J.S., W.J. van Ooij. 2004. “Improved corrosion protection of aluminum alloys byelectrodepositied silanes”. Journal of Materials Engineering and Performance 13 : 475–480.
- [21] Gelest, Inc. “Silane Coupling Agents: Connecting Across Boundaries”. http://www.gelest.com/goods/pdf/couplingagents.pdf.
- [22] Graeve I. De, E. Tourwe, M. Biesemans, R. Willem, H. Terryn. 2008. “Silane solution stability and film morphology of water-based bis-1,2-(triethoxysilyl) ethane for thin-film deposition on aluminium”. Progress in Organic Coatings 63 : 38-42.
- [23] Hashem K.M.E. 2003. ”Study of TEOS and TPOS anticorrosion coatings developed at different ranges of pyrolysis temperatures”. Applied Surface Science 217 : 302-313.
- [24] Hu J. M., Liu L., Zhang J. Q., Cao C.N. 2006. “Effects of electrodeposition potential on the corrosion properties of bis-1,2-[triethoxysilyl] ethane films on aluminum alloy”. Electrochimica Acta 51 : 3944-3949.
- [25] Hu J.M., L. Liu, J.Q. Zhang, C.N. Cao. 2006. “Preparation of DTMS films on LY12 aluminum alloys via electrochemical deposition and their anti-corrosive performance”. Chemical Journal of Chinese Universities 27 : 1121–1125.
- [26] Hu J.M., X.L.Liu, J.Q.Zhang, Ch.N.Cao. 2006. “Corrosion protection of Nd–Fe–B magnets by silanization”. Progress in Organic Coatings 55 : 388-392.
- [27] Hu, J. M., L. Liang, J.Q. Zhang, C.N. Cao. 2007. ”Electrodeposition of silane films on aluminum alloys for corrosion protection”. Progress in Organic Coatings. 58 : 265–271.
- [28] Lampke Th., S. Darwich, D. Nickel, B. Wielage. 2008. “Development and characterization of sol–gel composite coatings on aluminum alloys for corrosion protection”. Materials Science & Engineering Technology, Materialwissenschaft und Werkstofftechnik 39 : 914–919.
- [29] Li M., Y.Q. Yang, L. Liu, J.M. Hu, J.Q. Zhang. 2010. “Electro-assisted preparation of dodecyltrimethoxysilane/TiO2 composite films for corrosion protection of AA2024-T3 (aluminum alloy)”. Electrochimica Acta 55 : 3008–3014.
- [30] Liu L., J. M. Hu, J. Q. Zhang, C.N. Cao. 2006. “Improving the formation and protective properties of silane films by the combined use of electrodeposition and nanoparticles incorporation”. Electrochimica Acta 52 : 538-545.
- [31] Liu Y., H. Cao, Y. Yu, S. Chen. 2015. “Corrosion protection of silane coatings modified by carbon nanotubes on stainless steel”. International Journal of Electrochemical Science 10 : 3497-3509.
- [32] Masmoudi M., C. Rahal, Abdelmouleh M., Abdelhedi R. 2013. “Hydrolysis process of γ-APS and characterization of silane film formed on copper in different conditions”. Applied Surface Science 286 : 71–7.
- [33] Ooij van W.J., D. Zhu, M. Stacy, A. Seth, T. Mugada, J. Gandhi, P. Puomi. 2005. “Corrosion protection properties of organofunctional silanes. An overview”. Tsinghua Science and Technology 10 : 639–664.
- [34] Ooij W.J. van, D. Zhu. 2001. “Electrochemical impedance spectroscopy of bis-[triethoxysilypropyl] tetrasulfide on Al 2024-T3 substrates”. Corrosion 57 : 413-427.
- [35] Ooij W.J. van, D.Q. Zhu, G. Prasad, S. Jayaseelan, Y. Fu, N. Teredesai. 2000. “Silane based chromate replacements for corrosion control, paint adhesion, and rubber bonding”. Surface Engineering 16 : 386-396.
- [36] Owczarek E. 2019. “Methods of modifying anticorrosive protective properties of silane films”. Acta Physica Polonica A 135 : 147-152.
- [37] Palanivel V., Y. Huang, W.J. Van Ooij. 2005. “Effects of addition of corrosion inhibitors to silane films on the performance of AA2024-T3 in a 0.5 M NaCl solution”. Progress in Organic Coatings 53 : 153–168.
- [38] Pape P, E. Plueddemann. 1992. “Dipodal silane hydrolytic stability compared to conventional silane”. Silanes and Other Coupling Agents ed. K. Mittal VSP 105.
- [39] Phanasgaonkar A., V.S. Raja. 2009. “Influence of curing temperature, silica nanoparticles- and cerium on surface morphology and corrosion behavior of hybrid silane coatings on mild Steel”. Surface & Coatings Technology. 203 : 2260–2271.
- [40] Plueddemann EP. 1991. “Silane Coupling Agents”. New York: Plenum Press.
- [41] Romano A. P., M. Fedel, F. Deflorian, M. G. Olivier. 2011. “Silane sol–g Silane sol–gel film as pretreatment for improvement of barrier properties and filiform corrosion resistance of 6016 aluminium alloy covered by cataphoretic coating”. Progress in Organic Coatings 72 : 695-702.
- [42] Rubio J.; Mazo, M.A.; Martin-Ilana, A.; Tamayo, A. 2018. “FT-IR study of the hydrolysis and condensation of 3-(2-amino-ethylamino)propyl-trimethoxy silane”. Boletín de la Sociedad Espanola de Cerámica y Vidrio. 57 :160–168.
- [43] Seth A., W.J. van Ooij, P. Puomi, Z. Yin, A. Ashirgade, S. Bafna, C. Shivane. 2007. “Novel, one-step, chromate-free coatings containing anticorrosion pigments for metals—An overview and mechanistic study.” Progress in Organic Coatings 58 : 136-145.
- [44] Shacham R., D. Avnir, D. Mandler. 1999. “Electrodeposition of methylated sol-gel films on conducting surfaces”. Advanced Materials 11 : 384–388.
- [45] Sheffer M., A. Groysman, D. Mandler. 2003 “Electrodeposition of sol-gel films on Al for corrosion protection”. Corrosion Science 45 : 2893–2904.
- [46] Trabelsi W., L. Dhouibi, E. Triki, M.G.S. Ferreira, M.F. Montemor. 2005. “An electrochemical and analytical assessment on the early corrosion behaviour of galvanised steel pretreated with aminosilanes”. Surface & Coatings Technology 192 : 284–290.
- [47] Wang H., R. Akid. 2007. “ A room temperature cured sol-gel anticorrosion pre-treatment for Al 2024-T3 alloys”. Corrosion Science 49 : 4491–4503.
- [48] Wang Y., Y. Li, F. Wang. 2012. “Polymeric organo-silane coatings for aluminum alloy corrosion protection by self-assembled method”. E-Journal of Chemistry. 9 : 435–442.
- [49] Wu L.K., L. Liu, J. Li, J.M. Hu, J.Q. Zhang, C.N. Cao. 2010. “Electrodeposition of cerium (III)-modified bis-[triethoxysilypropyl]tetra-sulphide films on AA2024-T3 (aluminum alloy) for corrosion protection”. Surface & Coatings Technology 204 : 3920–3926.
- [50] Zandi Zand R., K.Verbeken, A. Adriens. 2012. “Electrochemical assessement of the self-healing properties of cerium doped sol-gel coatings on 304L stainless steel substrates.” International Journal of Electrochemical Science 7 : 9592-9608.
- [51] Zanotto F., V. Grassi, A. Frignani, F. Zucchi. 2011. “Protection of the AZ31 magnesium alloy with cerium modified silane coatings”. Materials Chemistry and Physics 129: 1–8.
- [52] Zhu D., W.J. van Ooij. 2002. “Structural characterization of bis- triethoxysilylpropyl] tetrasulfide and bis-[trimethoxysilylpropyl]amine silanes by Fouriertransform infrared spectroscopy and electrochemical impedance spectroscopy”. Journal of Adhesion Science and Technology 16 : 1235-1260.
- [53] Zhu D., W.J. van Ooij. 2003. “Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl)propyl]tetrasulfide in neutral sodium chloride solution. Part 2: mechanism for corrosion protection”. Corrosion Science 45 : 2177-2197.
- [54] Zhu D., W.J. van Ooij. 2004. “Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane”. Progress in Organic Coatings 49 : 42–53.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c945d239-4319-4443-8bf3-06f380274c9f