PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Simulation on Flyrock due to Blasting Using Smoothed Particle Hydrodynamics (SPH) with LS-Dyna software

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Symulacja na odłamkach skalnych powstałych w wyniku odstrzału z wykorzystaniem hydrodynamiki cząstek wygładzonych (SPH) z oprogramowaniem LS-Dyna
Konferencja
POL-VIET 2023 — the 7th International Conference POL-VIET
Języki publikacji
EN
Abstrakty
EN
In surface mining operation, blasting method has been commonly used and accounted highly for breaking waste rock and mineral. The main goal of the activity is fundamental fragmentation by energy generation due to blasting. However, only 20% to 30% blasting energy is generated to fragment rock. The remain energry is wasted for flyrock, ground vibration, air overpressure, dust and too fine fragmentation. Flyrock in blasting is large risk for surface mines and occupies more than a half of incidents relating to blasting at surface mines, because this is a severe issue and causes negative reaction of the surrounding residients. However, studies on flyrock-phenomenon prediction methods for blasting in Vietnam have been also limited. In the study, simulation analysis method on induce-blasting-induced flyrock experiment using Smoothed Particle Hydrodynamics (SPH) with LS-Dyna software. Two-dimension modelling was built and practically applied for B2 cross section of Mong Son quarry in Yen Bai province. The result showed that the ability of Smoothed Particle Hydrodynamics (SPH) in analysizing flyrock trajectory distance in blasting. By using the modelling with field-site parameters, the researcher monitored flyrock velocity at installed time periods, such as 1.5 second when the flyrocks fly with a maximum distance of 85 m from blasting site and their average velocity of 40 m/s.
Rocznik
Strony
13--21
Opis fizyczny
Bibliogr. 47 poz., rys., tyab., wykr., zdj.
Twórcy
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi 100000, Vietnam
  • Innovations for Sustainable and Responsible Mining (ISRM) Research Group, Hanoi University of Mining and Geology, 18 Vien street, Hanoi 100000, Vietnam
autor
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi 100000, Vietnam
  • Innovations for Sustainable and Responsible Mining (ISRM) Research Group, Hanoi University of Mining and Geology, 18 Vien street, Hanoi 100000, Vietnam
  • Institute of Mining Science and Technology – Vinacomin
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi 100000, Vietnam
  • Innovations for Sustainable and Responsible Mining (ISRM) Research Group, Hanoi University of Mining and Geology, 18 Vien street, Hanoi 100000, Vietnam
Bibliografia
  • 1. Kahriman, A., Ozer, U., Aksoy, M., Karadogan, A., Tuncer, G. (2006). Environmental impacts of bench blasting at Hisarcik Boron open pit mine in Turkey. Environmental Geology, 50 (7), 1015-1023.
  • 2. Uysal, O., Cavus, M. (2013). Effect of a pre-split plane on the frequencies of blast induced ground vibrations. Acta Montanistica Slovaca, 18(2), 101-109.
  • 3. Karadogan, A., Kahriman, A., Ozer, U. (2014). A new damage criteria norm for blast induced ground vibrations in Turkey. Arabian Journal of Geosciences, 7(4), 1617-1627.
  • 4. Gorgulu, K., Arpaz, E., Uysal, O., Duruturk, Y.S., Yuksek, A.G., Kocaslan, A., Dilmac, M.K. (2015). Investigation of the effects of blasting design parameters and rock properties on blast-induced ground vibrations. Arabian Journal of Geosciences, 8(6), 4269- 4278.
  • 5. Kulekci, G., Alemdag, S. (2016). The investigation of blasting effect on natural heritages in quarries: Registered rock room sample. Proceedings of the 8th International Aggregates Symposium, 13-14 October, Kutahya, Turkey, 498-504.
  • 6. Singh, T.N., Singh, V. (2005). An intelligent approach to prediction and control ground vibration in mines. Geotechnical and Geological Engineering, 23(3), 249-262.
  • 7. Rezaei, M., Monjezi, M., Varjani, A.Y. (2011). Development of a fuzzy model to predict flyrock in surface mining. Safety Science, 49, 298-305.
  • 8. Hajihassani, M., Armaghani, D.J., Sohaei, H., Mohamad, E.T., Marto, A. (2014). Prediction of airblast-overpressure induced by blasting using a hybrid artificial neural network and particle swarm optimization. Applied Acoustics, 80, 57-67.
  • 9. Sadeghi, F., Monjezi, M., Armaghani, D.J. (2020). Evaluation and optimization of prediction of toe that arises from mine blasting operation using various soft computing techniques. Natural Resources Research, 29(2), 887-903.
  • 10. Bhandari S (1997) Engineering rock blasting operations. A. A. Balkema, Rotterdam. 11. Fletcher, L. R., D'Andrea, D. V. (1986): Control of flyrock in blasting. Proc., 12th Conf. on Explosives and Blasting Technique, Atlanta, Georgia, 167-177.
  • 12. Raina AK, Murthy VMSR, Soni AK (2015) Flyrock in surface mine blasting: understanding the basics to develop a predictive regime. Curr Sci 108:660–665.
  • 13. Workman, J. L., Calder, P. N. (1994): Flyrock prediction and control in surface mine blasting. Proc., 20th Conf. on Explosives and Blasting Technique, Austin, Texas, 59-74.
  • 14. Kopp, J. W. (1994): Observation of flyrock at several mines and quarries. Proc., 20th Conf. on Explosives and Blasting Technique, Austin, Texas, 75-81.
  • 15. Lundborg N, Persson PA, Ladegaard-Pedersen A, Holmberg R (1975) keeping the lid on flyrock in opencast blasting. Eng Min J 95–100.
  • 16. Roth J (1979) A model for the determination of flyrock range as a function of shot conditions, final report contract no. J03872A2. Management Science Associates, Los Altos.
  • 17. Hillier DE, Holywell PD, Jeffries RM, Scott IMB (1999) Limiting the instance of flyrock from quarry operations research report. WS Atkins Consultants Ltd., Warrington.
  • 18. Schneider L (1997) Back to the basics, flyrock (part 2: prevention). The Journal of explosives engineering 14:1−14 quarry blasting. Appl Acoust 71:1169–1176. doi:10.1016/j.apacoust.2010.07.008
  • 19. Adhikari GR (1999) Studies on flyrock at limestone quarries. Rock Mech Rock Eng 32:291–301. doi:10.1007/s006030050049
  • 20. Mishra AK, Mallick DK (2012) Analysis of blasting related accidents with emphasis on flyrock and its mitigation in surface mines. In: Proceedings of the 10th International Symposium on Rock Fragmentation by Blasting, New Delhi, India. pp. 555–563
  • 21. Bajpayee TS, Rehak TR, Mowrey GL, Ingram DK (2004) Blasting injuries in surface mining with emphasis on flyrock and blast area security. J Saf Res 35:47–57. doi:10.1016/j.jsr.2003.07.00
  • 22. Kulekci, G., Yilmaz, A.O. (2018). Roadway tunnel construction with drilling-blasting method; Gümüşhane environment road example. Int. Journal on Mathematic, Engineering and Natural Sciences, 4, 34-39.
  • 23. Kulekci, G., Yilmaz, A. (2019). Investigation of the effect of activities in a coper mine on historical works, an example of Gümüşhane Süleymaniye. Journal of Underground Resources, 16(8), 1-14.
  • 24. Monjezi, M., Amini Khoshalan, H., Yazdian Varjani, A. (2010a). Prediction of flyrock and backbreak in open pit blasting operation: a neuro-genetic approach. Arabian Journal of Geosciences, 5(3), 441-448.
  • 25. Monjezi, M., Bahrami, A., Yazdian Varjani, A. (2010b). Simultaneous prediction of fragmentation and flyrock in blasting operation using artificial neural networks. International Journal of Rock Mechanics and Mining Sciences, 47(3), 476-480.
  • 26. Monjezi, M., Mehrdanesh, A., Malek, A., Khandelwal, M. (2012). Evaluation of effect of blast design parameters on flyrock using artificial neural networks. Neural Computing and Applications, 23(2), 349-356.
  • 27. Rezaei, M., Monjezi, M., Varjani, A.Y. (2011). Development of a fuzzy model to predict flyrock in surface mining. Safety Science, 49, 298-305.
  • 28. Ghasemi, E., Sari, M., Ataei, M. (2012a). Development of an empirical model for predicting the effects of controllable blasting parameters on flyrock distance in surface mines. International Journal of Rock Mechanics and Mining Sciences, 52, 163-170.
  • 29. Ghasemi, E., Amini, H., Ataei, M., Khalokakaei, R. (2012b). Application of artificial intelligence techniques for predicting the flyrock distance caused by blasting operation. Arabian Journal of Geosciences, 7(1), 193-202.
  • 30. Amini, H., Gholami, R., Monjezi, M., Torabi, S.R., Zadhesh, J. (2011). Evaluation of flyrock phenomenon due to blasting operation by support vector machine. Neural Computing and Applications, 21(8), 2077-2085.
  • 31. Raina, A.K., Chakraborty, A.K., Choudhury, P.B., Sinha, A. (2011). Flyrock danger zone demarcation in opencast mines: a risk based approach. Bulletin of Engineering Geology and the Environment, 70(1), 163-172.
  • 32. Alemdag, S., Zeybek, H.I., Kulekci, G. (2019). Stability evaluation of the Gümüşhane-Akçakale Cave by numerical analysis method. Journal of Mountain Science, 16(9), 2150-58.
  • 33. Momeni, E., Nazir, R., Armaghani, D.J., Maizir, H. (2014). Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN. Measurement, 57, 122-131.
  • 34. Mohamad, E.T., Armaghani, D.J., Hajihassani, M., Faizi, K., Marto, A. (2013a). A simulation approach to predict blasting-induced flyrock and size of thrown rocks. Electronic Journal of Geotechnical Engineering, 18, 365-374.
  • 35. Monjezi, M., Dehghani, H. (2008). Evaluation of effect of blasting pattern parameters on back break using neural networks. International Journal of Rock Mechanics and Mining Sciences, 45(8), 1446-1453.
  • 36. Esmaeili, M., Osanloo, M., Rashidinejad, F., Bazzazi, A.A., Taji, M. (2014). Multiple regression, ANN and ANFIS models for prediction of backbreak in the open pit blasting. Engineering with Computers, 30(4), 549-558.
  • 37. Garret, J.H. (1994). Where and why artificial neural networks are applicable in civil engineering. Journal of Computer in Civil Engineering, 8, 129-130.
  • 38. Tran Thanh Thung.(2017). Study of the SPH method for Simulation in LS-Dyna
  • 39. L.B. Jayasinghe. (2020). Numerical investigation into the blasting-induced damage characteristics of rocks considering the role of in-situ stressed and discontinuity persistencd. Nanyang Centre for Underground Space, School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798.
  • 40. Jing Gao, Shizhen Xie, Xiantang Zhang, Hongli Wang, Wenle Gao, và Hongmin Zhou. (2020). Study on the 2D optimization simulation of complex five-hole cutting blasting under different lateral pressure coefficients. Hindawi Complexity. Volume 2020, Article ID 4639518, 12 pages
  • 41. Gaohui Wang, Sherong Zhang, Yuan Kong, and Hongbi LI. (2013). A comparative sudy on the dynamic response of concrêt gravity dams sybjected to underwater and air explosions. Journal of Performance of Constructed Facilities. Submitted October 22, 2013; accepted January 29, 2014; posted ahead of print January 31, 2014. doi:10.1061 (ASCE)CF.1943-5509.0000589.
  • 42. Jingxiao Xu, Jason Wang. (2013). Interaction Methods for the SPH Parts (Multiphase Flows, Solid Bodies) in LS-Dyna. Livermore Software Technology Corporation.
  • 43. PGS.TS. Đàm Trọng Thắng, PGS. TS. Bùi Xuân Nam, TS. Trần Quang Hiếu. (2015). Nổ mìn trong ngành mỏ và công trình. NXB Khoa học tự nhiên và công nghệ. Hà Nội
  • 44. Jing Gao, Shizhen Xie, Xiantang Zhang, Hongli Wang, Wenle Gao, và Hongmin Zhou. (2020). Study on the 2D optimization simulation of complex five-hole cutting blasting under different lateral pressure coefficients. Hindawi Complexity. Volume 2020, Article ID 4639518, 12 pages
  • 45. Riedel, W., Thoma, K., Hiermaier, S. (1999). Numerical analysis using a new macroscopic concrete model for hydrocodes. In Proceedings of 9th international symposium on interaction of the effects of munitions with structures (pp. 315–322). Strausberg, Germany
  • 46. Satellite Images of Mong Son quarrz.
  • 47. Illustration of Mining Production Adjustment of Mong Son Quarry, Mong Son Ward, Yen Binh District, Yen Bai Province
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c94439aa-3a13-4020-a862-258d27ff00db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.