PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Engineering optimization of decompressive craniectomy based on finite element simulations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The optimal execution of decompressive craniectomy in terms of the size and location of the skull opening is not straightforward. Our main goals are twofold: (1) constructing a design optimization method which can be applied to determine optimal skull opening for individual patient-specific cases and (2) performing a large-scale parametric optimization study to give some guidance in general about the optimal skull opening in case of oedematous brain tissue. Methods: A large number of virtual experiments performed by finite element simulations were applied to determine tendencies of tissue behaviour during surgery. The multiobjective optimization is performed by Goal Programming and Physical Programming methods. Results: Our results show that the postoperative pressure has an approximately linear dependence on the preoperative pressure and the skull opening area, while the damaged brain volume could have a more complex nonlinear dependence on the input data. Based on the averaged results of the parametric optimization study, the optimal skull opening has been determined in the function of the preoperative pressure and the relative importance of the pressure reduction. These results show that the optimal size of the unilateral skull opening is usually between 130–180 cm2 and these openings are more beneficial than the currently analysed bifrontal openings. Conclusions: The optimal skull opening is patient-specific and depends on several input data. The presented methodology can be applied to optimize surgery based on these input parameters for different injury types. Based on the results of large-scale parametric study generally applicable approximate results have been provided.
Rocznik
Strony
109--122
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Department of Structural Mechanics, Budapest University of Technology and Economics, Budapest, Hungary
autor
  • Department of Structural Mechanics, Budapest University of Technology and Economics, Budapest, Hungary
autor
  • Department of Neurosurgery, University of Pecs, Pecs, Hungary
  • Department of Neurosurgery, University of Pecs, Pecs, Hungary
autor
  • Department of Structural Mechanics, Budapest University of Technology and Economics, Budapest, Hungary
Bibliografia
  • [1] AMUNTS K., LEPAGE C., BORGEAT L., MOHLBERG H., DICKSCHEID T., ROUSSEAU M.-É., BigBrain: An UltrahighResolution 3D Human Brain Model, Science, 2013, 340 (6139), 1472–1475.
  • [2] ANSYS® Academic Research, Release 18.0, ANSYS Workbench User’s Guide, ANSYS, Inc.
  • [3] COOPER D.J., ROSENFELD J.V., MURRAY L., ARABI Y.M., DAVIES A.R., D’URSO P. et al., Decompressive craniectomy in diffuse traumatic brain injury, New England Journal of Medicine, 2011, 364 (16), 1493–1502.
  • [4] ELKIN B., MORRISON B., Region-specific tolerance criteria for the living brain, Stapp Car Crash J., 2007, 51, 127–138.
  • [5] FAUL M., XU L., WALD M.M., CORONADO V.G., Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations and Deaths 2002–2006, Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, Atlanta,GA, 2010.
  • [6] FLETCHER T.L., KOLIAS A.G., HUTCHINSON P.J.A., SUTCLIFFE M.P.F., Development of a Finite Element Model of Decompressive Craniectomy, PLoS One, 2014, 9 (7), e102131.
  • [7] FLETCHER T.L., WIRTHL B., KOLIAS A.G., ADAMS H., HUTCHINSON P.J.A., SUTCLIFFE M.P.F., Modelling of Brain Deformation After Decompressive Craniectomy, Annals of Biomedical Engineering, 2016, 44(12), 3495–3509.
  • [8] FOWLER S.S., LEONETTI J.P., BANICH J.C., LEE J.M., WURSTER R., YOUNG M.R.I., Duration of neuronal stretch correlates with functional loss, Otolaryngol. Head Neck Surg., 2001, 124, 641–644.
  • [9] FRANCESCHINI G., BIGONI D., REGITNIG P., HOLZAPFEL G.A., Brain tissue deforms similarly to filled elastomers and follows consolidation theory, Journal of the Mechanics and Physics of Solids, 2006, 54, 2592–2620.
  • [10] GAO C.P., ANG B.T., Biomechanical modelling of decompressive craniectomy in traumatic brain injury, [in:] G.T. Manley, C. Hemphill, S. Stiver (Eds.), Acta Neurochirurgica Supplementum, Springer, Vienna, 2008, 102, 279–282.
  • [11] HAZAY M., BAKOS B., TÓTH J.P., BÜKI A., BOJTÁR I., Optimization of Decompressive Craniectomy based on Finite Element Simulations, [in:] D. Kytyr, Z. Major, T. Doktor (Eds.), 16th Youth Symposium on Experimental Solid Mechanics, Acta Polytechnica CTU Proceedings, 2018, May 17–19, Traunkirchen, Austria, 2018, 18, 6–9.
  • [12] HAZAY M., VARGA A., NAGY E., TÓTH P.J., BÜKI A., BOJTÁR I., Finite element reconstruction of decompressive craniectomy, Biomechanica Hungarica, 2018, 9 (2), 51–60.
  • [13] HORGAN T.J., GILCHRIST M.D., The creation of three-dimensional finite element models for simulating head impact biomechanics, I. J. Crash, 2003, 8 (4), 353–366.
  • [14] HUTCHINSON P.J., KOLIAS A.G., TIMOFEEV I.S., CORTEN E.A., CZOSNYKA M., TIMOTHY J. et al., Trial of Decompressive Craniectomy for Traumatic Intracranial Hypertension, New England Journal of Medicine, 2016, 375 (12), 1119–1130.
  • [15] LI X., VON HOLST H., Finite Element Modeling of Decompressive Craniectomy (DC) and its Clinical Validation, Advances in Biomedical Science and Engineering, 2015, 2 (1), 1–9.
  • [16] MAAS A.I., ROOZENBEEK B., MANLEY G.T., Clinical trials in traumatic brain injury: past experience and current developments, Neurotherapeutics, 2010, 7, 115–126.
  • [17] MARMAROU A., Pathophysiology of traumatic brain edema: current concepts, Acta Neurochir. Suppl., 2003, 86, 7–10.
  • [18] MESSAC A., Optimization in Practice with MATLAB® for Engineering Students and Professionals, Cambridge University Press, New York (NY), 2015, 159–161.
  • [19] MILLER K., WITTEK A., TAVNER A., JOLDES G., Biomechanical Modelling of the Brain for Neurosurgical Simulation and Neuroimage Registration, [in:] K. Miller (Ed.), Biomechanics of the Brain, Springer, 2019, 135–164.
  • [20] PIEPER S., HALLE M., KIKINIS R., 3D Slicer, Proceedings of the 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2004, Apr. 15–18, Arlington, VA, USA, 2004, 1, 632–635.
  • [21] SAHUQUILLO J., Decompressive craniectomy for the treatment of refractory high intracranial pressure in traumatic brain injury, Cochrane Database Syst. Rev., 2006, 1, CD003983.
  • [22] The MathWorks, MATLAB® Programming Fundamentals 2016b, The MathWorks, Natick (MA), 2016.
  • [23] THURMAN D.J., ALVERSON C., DUNN K.A., GUERRERO J., SNIEZEK J.E., Traumatic brain injury in the United States: A public health perspective, J. of Head Trauma Rehabil., 1999, 14 (6), 602–615.
  • [24] VON HOLST H., LI X., KLEIVEN S., Increased strain levels and water content in brain tissue after decompressive craniotomy, Acta Neurochir., 2012, 154 (9), 1583–1593.
  • [25] WANG F., HAN Y., WANG B., PENG Q., HUANG X., MILLER K., WITTEK A., Prediction of brain deformations and risk of traumatic brain injury due to closed-head impact: quantitative analysis of the effects of boundary conditions and brain tissue constitutive model, Biomechanics and Modeling in Mechanobiology, 2018, 17 (4), 1165–1185.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9429b0f-3e66-4d09-a44e-f86d32882b7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.