PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sezonowy przebieg wskaźnika wykorzystania wody (WUE) w lesie sosnowym

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Seasonal Water Use Efficiency (WUE) Index Course in Pine Forest
Języki publikacji
PL
Abstrakty
EN
Assessment of the ecosystem productivity in relation to the amount of water used for such kind of processes have already been investigated for the different ecosystem types by many researchers. Water Use Efficiency (WUE) parameter shows seasonal variation due to changing weather conditions, which determine processes of photosynthesis, respiration and evapotranspiration, and because of biological factors variability. The analysis of the WUE dynamics in the forest ecosystem in Tuczno research station over the hydrological year 2012 were presented in the paper. WUE was calculated based on the daily CO2 and H CO2 O fluxes measured by means of the eddy covariance system (EC) installed over the forest canopy. The fluxes were quality checked in relation to the wind direction, friction velocity values and stationary. The data series used in this investigation were not gap-filled. By using the net value of both fluxes, a good indicator which describe the behavior of the ecosystem as the whole, was obtained. Among a number of weather condition factors, that affect the value of the tested indicator (WUE), mainly photosynthetic photon flux density (PPFD) and the air temperature were evaluated. Separate analysis has been done for daily courses of both CO2 and H2 O fluxes, as well as for WUE for each month of the analyzed period. The highest values of H2 O fluxes (FH) were observed in May and June (0.25 and 0.3 kg m-2s-1) and the lowest in the period from September to December (0.02–0.05 kg m-2s-1). The daily courses of water vapor fluxes revealed dependence to the measured PPFD fluxes, which determines in turn the intensity of the evapotranspiration process. The time courses of the daily 30-min average carbon dioxide fluxes (FC) were also highly variable in each month, similarly to the variances of the FH fluxes. The lowest values of the net F COC were measured in the period from October to December (net CO2 fluxes did not exceed 0.55g m-2 s-1), while in the period from April to July the net ecosystem productivity was the biggest (1.5–2.0 m-2s-1),). WUE reached its minimum in May (7 g [CO2] kg-1), [H2O]), what indicates that the evapotranspiration of the ecosystem was the least effective from the point of view of COCOD absorption from the atmosphere (the ecosystem had a high productivity but it lost a great amount of water at the same time). In contrary, higher WUE values were observed in the colder period of the year, when the amount of available radiant energy was limited. WUE reached its peak in September (nearly 45 g of [CO2] kg-1), [H2O] ) which reveals, that in autumn the decline of evapotranspiration rates were higher than rates of the net CO2 exchange decrease. It also highlights the high adaptability of Scots pine (main species in studied forest ecosystem – 99%), to described conditions. The designated water use efficiency (WUE) parameter, may be used as a good indicator of the current condition of the ecosystem.
Słowa kluczowe
Rocznik
Strony
2780--2798
Opis fizyczny
Bibliogr. 22 poz., tab., rys.
Twórcy
  • Uniwersytet Przyrodniczy, Poznań
autor
  • Uniwersytet Przyrodniczy, Poznań
  • Uniwersytet Przyrodniczy, Poznań
autor
  • Uniwersytet Przyrodniczy, Poznań
autor
  • Uniwersytet Przyrodniczy, Poznań
  • Uniwersytet Przyrodniczy, Poznań
autor
  • Uniwersytet Przyrodniczy, Poznań
  • Global Change Research Center, AS CR, v.v.i. Brno, Czechy
Bibliografia
  • 1. Aubinet M., Grelle A., Ibrom A., Rannik Ü., Moncrieff J., Foken T., Kowalski A.S., Martin P.H., Berbigier P., Bernhofer Ch., Clement R., Elbers J., Granier A., Grünwald T., Morgenstern K., Pilegaard K., Rebmann C., Snijders W., Valentini R., Vesala T.: Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Advances in Ecological Research 30, 113–175 (2000).
  • 2. Aubinet M., Vesala T., Pappale D. (eds.): Eddy Covariance: A Practical Guide to Measurement and Data Analysis. Springer Atmospheric Sciences, 2012.
  • 3. Aurela M.: Carbon dioxide exchange in subarctic ecosystems measured by a micrometeorological technique. Finnish Meteorological Institute Contributions No. 51, 2005
  • 4. Baldocchi D.D., Verma S.B., Anderson D.E.: Canopy photosynthesis and water-use efficiency in a deciduous forest. Journal of Applied Ecology, 24, 251–260 (1987).
  • 5. Baldocchi D.D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology 9, 479–492 (2003).
  • 6. Chen J., Falk M., Euskirchen E., Paw U K.T., Suchanek T.H., Ustin S.L., Bond B.J, Brosofske K.D., Phillips., Bi R.: Biophysical controls of carbon flows in three successional Douglas-fir stands based on eddy – covariance measurment. Tree physiology, 22, 169–177 (2002).
  • 7. FAO: Global Forest Resources Assessment 2005, Main Report. Progress Towards Sustainable Forest Management FAO Forestry paper 147, Rome, 2006.
  • 8. Foken Th., Wichura B.: Tools for quality assessment of surface-based flux measurment. Agricultural and Forest Meteorology 78, 83–105 (1996).
  • 9. Friedman J.H.: A Variable Span Smoother. Tech. Rep. No. 5, Laboratory for Computational Statistics, Dept. of Statistics, Stanford Univ., California, 1984.
  • 10. Gu L., Falge E.M., Boden T., Baldocchi D.D, Black T.A., Saleska S.R., Suni T., Verma S.B., Vesala T., Wofsy S.C., Xu L.: Objective threshold determination for nighttime eddy flux filtering. Agricultural and Forest Meteoology, 128, 179–197 (2005).
  • 11. Informacja o stanie lasów oraz realizacji „Krajowego programu zwiększania lesistości” w 2010 r., MŚ, Warszawa, 2011.
  • 12. Koźmiński C., Michalska B., Czarnecka M.: Klimat województwa zachodnio-pomorskiego. Akademia Rolnicza w Szczecin, Uniwersytet Szczeciński, 147 (2007).
  • 13. Olejnik J.: Modelowe badania struktury bilansu cieplnego i wodnego zlewni w obecnych i przyszłych warunkach klimatycznych. Rocz. AR Pozn., z. 266, rozprawa habilitacyjna, 1996.
  • 14. Olejnik J., Kędziora A.: A model for heat and water balance estimation and its application to land use and climate variation. Earth Surface Processes and Landforms, 16, 601–617 (1991).
  • 15. Olejnik J. i in.: Oszacowanie strumieni netto dwutlenku węgla wymienianymi pomiędzy ekosystemem leśnym a atmosferą. Raport z projektu badawczego zleconego przez DGLP za okres styczeń 2008–grudzień 2011, 2012.
  • 16. Rosenberg N.J., Blad B.L. Verma S.B.: Microclimate: the biological environment. John Wiley, New York, 495 (1983).
  • 17. Urban O., Klem K., Ač A., Havránková K., Holišová P., Navráti M., Zitová M., Kozlová K., Pokorný R., Šprtová M., Tomášková I., Špund V., Grace J.: Impact of clear and cloudy sky conditions on the vertical distribution of photosynthetic CO2 uptake within a spruce canopy. Functional Ecology vol. 26, 46–55 (2012).
  • 18. Urbaniak M., Chojnicki B.H., Juszczak R., Olejnik J.: Seasonal water use efficiency run at Rzecin wetland. Acta agrophysica, 183, 108–126 (2010).
  • 19. Valentini R. ed.: Fluxes of Carbon, Water and Energy of European Forests. Springer-Verlag, Heidelberg, 2002.
  • 20. Webb E.K., Pearman G. , Leuing R.: Correction of flux measurment for density effect due to heat and water vapour transfer. Quarterly Journal of Royal Meteorological Society, 106, 85–100 (1980).
  • 21. Zając S., Kwiecień R.: Modyfikacja „Krajowego programu zwiększania lesistości”. [W]: Rola leśnictwa w ekorozwoju regionalnym (red. A. Grzywacz). Wyd. Polskie Towarzystwo Leśne, 114–132 (2002).
  • 22. Zając S., Kwiecień R.: Główne kierunki modyfikacji Krajowego programu zwiększania lesistości. Postępy Nauk Rolniczych, 3, 51–61 (2002).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c94273c0-86da-415e-bfbc-3131ec5f6ccd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.