PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of dynamic properties of sandstones based on index properties using artifcial neural network and multivariate linear regression methods

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dynamic properties of the rock are very important for the design of geotechnical structures and the modeling of deep drilling. In the present study, the velocity of compressional and shear waves (Vp and Vs) and the dynamic elastic modulus (Ed) of sandstones were estimated based on index tests using artificial neural network (ANN) and multivariate linear regression analysis (MVLRA) methods. For this purpose, petrographic, physical, mechanical and dynamic tests were performed on 54 specimens. Petrographic results showed that the samples were classified as feldspathic litharenite. The results showed that the Vp/Vs ratio was equal to 1.78. Also, the effect of mineralogy on mechanical properties was more than dynamic properties and the effect of quartz on dynamic properties was more than other minerals. The presented relationships were evaluated using R-squared (R2 ), root-mean-square error (RMSE), mean absolute relative prediction error (MARPE), variance account for (VAF) and performance index (PI). The results of the ANN to estimate the Ed, Vp and Vs showed that it is possible to estimate these parameters based on inputs with high accuracy. The accuracy of the ANN was higher than the MVLRA. Estimation of Vs, Vp and Ed by ANN showed correlation coefficients of 0.97, 0.86 and 0.92 and RMSE of 0.10, 0.31, and 3.98, respectively. The ANN was also conservative in predicting these variables, while MVLRA was conservative only in estimating the Vs and Ed of the studied sandstones.
Czasopismo
Rocznik
Strony
225--242
Opis fizyczny
Bibliogr. 71 poz.
Twórcy
  • Petroleum Engineering Department, Australian College of Kuwait, West Mishref, Kuwait
autor
  • Engineering Faculty of Khoy, Urmia University of Technology, Urmia, Iran
  • Faculty of Industry and Mining (Khash), University of Sistan and Baluchestan, Zahedan, Iran
  • School of Accounting, Jiujiang University, 551 Qianjindonglu, Jiujiang, Jiangxi, China
  • Department of Civil Engineering, Faculty of Engineering, Arak University, Arak, Iran
Bibliografia
  • 1. Ahmadi R, Shybt SAH (2020) Study of artificial neural networks in information security risk assessment JMAS https://doi.org/10.24200/jmas.vol8iss02pp1-10.
  • 2. Ameen MS, Smart BGD, Somerville JMC, Hammilton S, Naji NA (2009) Prediction rock mechanical properties of carbonated from wireline logs (a case study: Arab-D reservoir, Ghavar field, Saudi Arabia). Int J Rock Mech Min Sci 26:430–444
  • 3. Anon OH (1979) Classification of rocks and soils for engineering geological mapping, Part 1: rock and soil materials. Bull Int Assoc Eng Geol 19(1):364–437
  • 4. Ansari Y, Hashemi A (2017) Neural network approach in assessment of fiber concrete impact trength. J Civ Eng Mater Appl 1(3):88–97
  • 5. Aşcı M, Kaplanvural İ, Karakaş A, Şahin ÖK, Kurtuluş C (2017) Correlation of physical and mechanical properties with ultrasonic pulse velocities of sandstones in Çenedağ. Kocaeli-Turkey Int J Adv 5(2):109–115
  • 6. ASTM (2002) Standard test method for determination of the point load strength index of rock. ASTM D5731 International, West Conshohocken
  • 7. Beeravelli VN, Chanamala R, Kancherla PR (2018) an Artificial Neural Network and Taguchi Integrated Approach to the Optimization of Performance and Emissions of Direct Injection Diesel Engine. EJOSDR 2(2): 1–16. https://doi.org/10.20897/ejosdr/85412
  • 8. Bell FG (1978) The physical and mechanical properties of the Fell Sandstones, Northumberland, England. Eng Geol 12:11–29
  • 9. Broch E, Franklin J (1972) The point-load strength test. Int J Rock Mech Min 9(6):669–697
  • 10. Brocher TM (2005) Empirical relations between elastic wave speeds and density in the Earth’s crust. Bull Seismol Soc Am 95(6):2081–2092
  • 11. Castagna JP, Batzle ML, Kan TK (1993) Rock physics- the link between rock properties and AVO response in Castagna, JP, and Backus, MM, Eds., Offset-dependent reflectivity-Theory and practice of AVO analysis: Society of Exploration Geophysicists, 135–171
  • 12. Eberli GP, Anselmetti FS, Incze ML (2003) Factors controlling elastic properties in carbonate sediments and rocks. Lead Edge 1:654–660
  • 13. Fallah M, Pirali Zefrehei AR, Hedayati SA, Bagheri T (2021) Comparison of temporal and spatial patterns of water quality parameters in Anzali Wetland (southwest of the Caspian Sea) using Support vector machine model. Casp J Environ Sci 19(1):95–104
  • 14. Farajzadehbardeji M, Habibi G (2020) Evaluation of the effects of application of Oleobiotic growth stimulator in broiler chickens. JRSET 8(3):1–13
  • 15. Folk RL (1974) Petrology of Sedimentary Rocks Hemphill, Austin, 600p
  • 16. García-Díaz N, Verduzo-Ramirez A, Garcia-Virgen J, Muñoz L (2016) Applying absolute residuals as evaluation criterion for estimating the development time of software projects by means of a neuro-fuzzy approach. J Inform Systems Eng 1(4):46–57
  • 17. Ghadimi H, Ebrahimian H (2015) MLP based islanding detection using histogram analysis for wind turbine distributed generation. UJRSET 3(3):16–26
  • 18. Ghadirinejad N, Nejad MG, Alsaadi N (2021) A fuzzy logic model and a neuro-fuzzy system development on supercritical CO2 regeneration of Ni/Al2O3 catalysts J CO2 Util 54: 101706
  • 19. Ghafoori M, Rastegarnia A, Lashkaripour GR (2018) Estimation of static parameters based on dynamical and physical properties in limestone rocks. J Afr Earth Sci 137:22–31
  • 20. Ghobadi MH, Heidari M, Rafiei B, Mousavi S, Ariafar N (2013) Study of geotechnical properties of sandstones in Aghajari Formation in the east and southeast of Ahvaz. Adv Appl Geol 3(2):21–33 (in Persian)
  • 21. Gholami R, Moradzadeh A, Rasouli V, Hanachi J (2014) Shear wave velocity prediction using seismic attributes and well log data. Acta Geophys 62(4):818–848
  • 22. Gholami V, Darvari Z, Mohseni Saravi M (2015) Artificial neural network technique for rainfall temporal distribu-tion simulation (Case study: Kechik region). Casp J Environ Sci 13(1):53–60
  • 23. Golabi M, Nejad MG (2022) Intelligent and Fuzzy UAV Transportation Applications in Aviation 4.0. In: Kahraman C., Aydın S. (eds) Intelligent and Fuzzy Techniques in Aviation 4.0. Studies in Systems, Decision and Control, vol 372, Cham. https://doi.org/10.1007/978-3-030-75067-1-19
  • 24. Goodman RE (1989) Introduction to rock mechanic. Wiley, New York
  • 25. Gorgani HH, Maghsoudi P, Sadeghi S (2019) An innovative approach for study of thermal behavior of an unsteady nanofluid squeezing flow between two parallel plates utilizing artificial neural network. EJOSDR 3(1):em0069
  • 26. Gupta V, Sharma R (2012) Relationship between textural, petrophysical and mechanical properties of quartzites: a case study from northwestern Himalaya. Eng Geol 135:1–9
  • 27. Hamada GM (2004) Reservoir fluids identification using Vp/Vs ratio, oil & gas science and technology – Rev. IFP 59(6):649–654
  • 28. Hossain Z, Mukerji T, Fabricius IL (2012) Vp-Vs relationship and amplitude variation with offset modelling of glauconitic greensand. Geophys Prospect 60(1):117–137
  • 29. Hsieh YM, Li HH, Huang TH, Jeng FS (2008) Interpretations on how the macroscopic mechanical behavior of sandstone affected by microscopic properties—revealed by bonded-particle model. Eng Geol 99:1–10
  • 30. ISRM (1981) Rock characterization testing and monitoring. In: Brown, E.T. (Ed.), ISRM Suggested Methods. Pergamon Press, Oxford
  • 31. Kavyanifar B, Tavakoli B, Torkaman J, Mohammad Taheri A, Ahmadi Orkomi A (2020) Coastal solid waste prediction by applying machine learning approaches (Case study: Noor, Mazandaran Province, Iran). Casp J Environ Sci 18(3):227–236
  • 32. Khandelwal M (2013) Correlating P-wave velocity with the physico-mechanical properties of different rocks. Pure Appl Geophys 170:507–514. https://doi.org/10.1007/s00024-012-0556-7
  • 33. Lashkaripour GR, Rastegarnia A, Ghafoori M (2018) Assessment of brittleness and empirical correlations between physical and mechanical parameters of the Asmari limestone in Khersan 2 dam site, in southwest of Iran. J Afr Earth Sci 138:124–132
  • 34. Lawal AI, Kwon S, Kim GY (2021) Prediction of the blast-induced ground vibration in tunnel blasting using ANN, moth-flame optimized ANN, and gene expression programming. Acta Geophys 69(1):161–174
  • 35. Lotfollahi S, Ghorji M, Hoseini Toodashki V (2018) An investigation into the effect of foliation orientation on displacement of tunnels excavated in metamorphic rocks. JCEMA 2(3):138–145
  • 36. Martınez-Martınez J, Benavente D, Garcıa-del-Cura MA (2012) Comparison of the static and dynamic elastic modulus in carbonate rocks. Bull Eng Geol Environ 71:263–268
  • 37. Mikaeil R, Esmaeilzade A, Shaffiee Haghshenas S (2021) Investigation of the relationship between Schimazek’s F-abrasiveness factor and current consumption in rock cutting process. JCEMA 5(2):47–55
  • 38. Namdar A, Sarabiyan S (2020) Relationship between emotional control and marital satisfaction in 20 to 45 years old boy in Torbat Heydarieh. JSSHR 8(3):18–25
  • 39. Nejad MG, Kashan AH, Shavarani SM (2018) A novel competitive hybrid approach based on grouping evolution strategy algorithm for solving U-shaped assembly line balancing problems. Prod Eng 12(5):555–566
  • 40. Oloruntobi O, Butt S (2020) The shear-wave velocity prediction for sedimentary rocks. J Nat Gas Sci Eng. 76:103084
  • 41. Oshnavieh D, Bagherzadeh Khalkhali A (2019) Use of shear wave velocity in evaluation of soil layer’s condition after liquefaction. JCEMA 3(3):113–130
  • 42. Parvizi S, Kharrat R, Asef MR, Jahangiry B, Hashemi A (2015) Prediction of the shear wave velocity from compressional wave velocity for Gachsaran Formation. Acta Geophys 63(5):1231–1243
  • 43. Pickett GR (1963) Acoustic character logs and their applications in formation evaluation. J Pet Technol 15:650–667
  • 44. Rahimi E, Teshnizi ES, Rastegarnia A, Al-Shariati EM (2019) Cement take estimation using neural networks and statistical analysis in Bakhtiari and Karun 4 dam sites, in south west of Iran. Bull Eng Geol Environ 78:2817–2834
  • 45. Rashidi Tazhan O, Pir Bavaghar M, Ghazanfari H (2019) Detecting pollarded stands in Northern Zagros forests, using artificial neural network classifier on multi-temporal lansat-8 (OLI) imageries (case study: Armarde, Baneh). Casp J Environ Sci 17(1):83–96
  • 46. Rastegarnia A, Teshnizi ES, Hosseini S, Shamsi H, Etemadifar M (2018) Estimation of punch strength index and static properties of sedimentary rocks using neural networks in south west of Iran. Measurement 128:464–478
  • 47. Reyhani F, Dehnavi HD (2020) Identification of effective factors on accountants motivation and prioritization of them by using fuzzy topsis. JMAS 8(1):38–43
  • 48. Rezaei M, Davoodi P (2021) Determining the relationship between shear wave velocity and physicomechanical properties of rocks. Int J Min Geo-Eng 55(1):63–70
  • 49. Rezaei M, Davoodi PK, Najmoddini I (2019) Studying the correlation of rock properties with P-wave velocity index in dry and saturated conditions. Appl Geophys 169:49–57
  • 50. Rustamovich Sultanbekov I, Yurievna Myshkina I, Yurievna Gruditsyna L (2020) Development of an application for creation and learning of neural networks to utilize in environmental sciences. Casp J Environ Sci 18(5):595–601
  • 51. Safarkhanlou ZA (2000) Study of Diagenesis of Sandstones in Shemshak Formation in Eastern Alborz, 2000, M.Sc. Thesis, University of Tehran, Faculty of Science
  • 52. Saghi H, Behdani M, Saghi R, Ghaffari AR, Hirdaris S (2019) Application of gene expression programming model to present a new model for bond strength of fiber reinforced polymer and concrete. JCEMA 3(1):15–29
  • 53. Salah MK, Alqudah M, Abd El-Aal AK, Barnes C (2018) Effects of porosity and composition on seismic wave velocities and elastic moduli of lower cretaceous rocks, central Lebanon. Acta Geophys 66(5):867–894
  • 54. Salazar LH, Fernandes A, Dazzi R, Garcia N, Leithardt VRQ (2020) Using different models of machine learning to predict attendance at medical appointments J Inform Syst Eng https://doi.org/10.29333/jisem/8430
  • 55. Sanaei FMA, Kazemi, Ahmadi H (2015) Designing and implementing fuzzy expert system for diagnosis of psoriasis UJRSET 3(2): 41–49
  • 56. Sarkar K, Vishal V, Singh TN (2012) An Empirical correlation of index geomechanical parameters with the compressional wave velocity. Geotech Geol Eng 30:469–479. https://doi.org/10.1007/s10706-011-9481-2
  • 57. Seyfi R (2017) Application of artificial neural network in modeling separation of microalgae. UJRSET 5(04):43–49
  • 58. Shamsashtiany R, Ameri M (2018) Road Accidents Prediction with Multilayer Perceptron MLP modelling Case Study: Roads of Qazvin. Zanjan Hamadan JCEMA 2(4):181–192
  • 59. Sheriff RE, Geldart LP (1995) Exploration Seismology, 2nd edn. Cambridge University Press
  • 60. Sobhani B, Safarianzengir V (2020) Monitoring and prediction of drought using TIBI fuzzy index in Iran. Casp J Environ Sci 18(3):237–250
  • 61. Tabatabaei M, Salehpour Jam A (2017) Optimization of sediment rating curve coefficients using evolutionary algorithms and unsupervised artificial neural network. Casp J Environ Sci 15(4):385–399
  • 62. Tamrakar NK, Yokota S, Shrestha SD (2007) Relationships among mechanical, physical and petrographic properties of Siwalik sandstones. Central Nepal Sub-Himalayas Eng Geol 90(3–4):105–123
  • 63. Tatham RH (1982) Vp/Vs and lithology. Geophysics 47:336–344
  • 64. Taylor R (1990) Interpretation of the correlation coefficient: a basic review. JDMS 6(1):35–39
  • 65. Ulusay R, Tureli K, Ider MH (1994) Prediction of engineering properties of a selected litharenite sandstone from its petrographic characteristics using correlation and multivariate statistical techniques. Eng Geol 37:135–157
  • 66. Uyanık O, Sabbağ N, Uyanık NA, Öncü Z (2019) Prediction of mechanical and physical properties of some sedimentary rocks from ultrasonic velocities. Bull Eng Geol Environ 78(8):6003–6016
  • 67. Vatankhah Barenji R, Ghadiri Nejad M, Asghari I (2018) Optimally sized design of a wind/photovoltaic/fuel cell off-grid hybrid energy system by modified-gray wolf optimization algorithm. Energy Environ 29(6):1053–1070
  • 68. Vizvári B, Guden H, Nejad GM (2018) Local search based meta-heuristic algorithms for optimizing the cyclic flexible manufacturing cell problem. AOTP 1(3):15–32
  • 69. Waszkiewicz S, Krakowska-Madejska P, Puskarczyk E (2019) Estimation of absolute permeability using artificial neural networks (multilayer perceptrons) based on well logs and laboratory data from Silurian and Ordovician deposits in SE Poland. Acta Geophys 67(6):1885–1894
  • 70. Yasar E, Ranjith PG, Perera MSA (2010) Physico-mechanical behaviour of southeastern Melbourne sedimentary rocks. Int J Rock Mech Min Sci 47:481–487
  • 71. Zorlu K, Gokceoglu C, Ocakoglu F, Nefeslioglu HA, Acikalin S (2008) Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng Geol 96:141–158
Uwagi
Korekta artykułu w Acta Geophysica Vol. 70, no 1. Nr DOI korekty: 10.1007/s11600-022-00733-7
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c94265ca-57da-42a8-a0b5-f6fecefff560
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.