PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metallurgical evaluation of copper ore flotation performance in the presence of Rhamnolipid biosurfactant produced from Pseudomonas aeruginosa. Part 1: Copper-bearing minerals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present research work studies the effect of rhamnolipid biosurfactant (RL) produced from Pseudomonas aeruginosa bacteria on the metallurgical response of a copper ore sample flotation through an extensive full factorial experimental design. Key influential factors including feed particle size, pulp solid content, pH, and dosages of collector, frother and RL biosurfactant were considered. The surface activity of the RL biosurfactant was also studied based on a D-optimal experimental design. Surface activity results revealed that increasing pH and electrolyte concentrations negatively impacted the RL surface activity, while the effect of electrolyte source was dependent on their ionic strength. Metallurgical investigations showed that operating parameters significantly influence the copper grade and recovery with considerable interaction among various parameters. RL biosurfactant was found to negatively decrease the copper grade (~0.5%) and positively enhance the recovery (~3%). Effect of RL was attributed to two potential mechanisms, i.e., being ineffective on copper minerals and/or interaction with gangue minerals, as well as increasing the rate of entrainment due to high foamability, both of which increased non-selective recovery of gangue minerals. Interestingly, regardless of the structural similarities, no interaction between the flotation reagents and rhamnolipid was observed. Fourier-transform infrared (FTIR) spectroscopic analysis of copper minerals, both pure and RL-exposed, showed that there was actually no molecular interaction between RL molecules and particle surface.
Rocznik
Strony
art. no. 183176
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wykr.
Twórcy
  • Department of Mining Engineering, Islamic Azad University, Sirjan, Iran
  • Department of Mining Engineering, Higher Education Complex of Zarand, Shahid Bahonar University of Kerman, Kerman, Iran
  • Mineral Industries Research Center, Shahid Bahonar University of Kerman, Kerman, Iran
  • Department of Mining Engineering, Islamic Azad University, Sirjan, Iran
  • Mineral Processing Group, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
  • Department of Geoscience and Petroleum, Faculty of Engineering, Norwegian University of Science and Technology, Trondheim, Norway
Bibliografia
  • AGHELI, S., HASSANZADEH, A., VAZIRI HASSAS, B., HASANZADEH, M., 2018, Effect of pyrite content of feed and configuration of locked particles on rougher flotation of copper in low and high pyritic ore types. International Journal of Mining Science and Technology 28(2), 167-176.
  • ASGARI, K., HUANG, Q., KHOSHDAST, H., HASSANZADEH, A., 2022. A review on bioflotation of coal and minerals: classification, mechanisms, challenges, and future perspectives. Mineral Processing and Extractive Metallurgy Review. Doi: 10.1080/08827508.2022.2121919.
  • ASGARI, K., KHOSHDAST, H., NAKHAEI, F., GARMSIRI, M.R., HUANG, Q., HASSANZADEH, A., 2023. A review on floc-flotation of fine particles: technological aspects, mechanisms, and future perspectives. Mineral Processing and Extractive Metallurgy Review. Doi: 10.1080/08827508.2023.2236770.
  • AYTAR ÇELIK, P., ÇAKMAK, H., ÖZ AKSOY, D., 2021. Green bioflotation of calcite using surfactin as a collector. Journal of Dispersion Science and Technology, 1–11. Doi:10.1080/01932691.2021.1979999.
  • AZIZI, A., HASSANZADEH, A., FADAEI, B., 2015. Investigating the first-order flotation kinetics models for Sarcheshmeh copper sulfide ore. International Journal of Mining Science and Technology 25(5), 849-854.
  • AZIZI, A., MASDARIAN, M., HASSANZADEH, A., BAHRI, Z., NIEDOBA, T., SUROWIAK, A., 2020. Parametric optimization in rougher flotation performance of a sulfidized mixed copper ore. Minerals 10(8), 660.
  • BENINCASA, M., MARQUE’S, A., PINAZO, A., MANRESA, A., 2010. Rhamnolipid surfactants: alternative substrates, new strategies. In Sen, R. (Ed.), Biosurfactants. Springer, New York, 170-184.
  • BODAGH, A., KHOSHDAST, H., SHARAFI, H., ZAHIRI, H.S., AKBARI NOGHABI, K., 2013. Removal of cadmium(II) from aqueous solution by ion flotation using rhamnolipid biosurfactant as ion collector. Industrial & Engineering Chemistry Research 52(10), 3910-3917.
  • BOVEIRI, R., SHOJAEI, V., KHOSHDAST, H., 2019. Efficient cadmium removal from aqueous solutions using a sample coal waste activated by rhamnolipid biosurfactant. Journal of Environmental Management 231, 1182–1192.
  • BULATOVIC, S.M., 2020. Handbook of flotation reagents: chemistry, theory and practice, flotation of sulfide ores. Elsevier Ltd., Amsterdam.
  • CHAMPION, J.T., GILKEY, J.C., LAMPARSKI, H., RETTERER, J., MILLER, R.M., 1995. Electron microscopy of rhamnolipid (biosurfactant) morphology: effects of pH, cadmium and octane. Journal of Colloid and Interface Science 170, 569-574.
  • DEEPIKA, K., RAGHURAM, M., BRAMHACHARI, P., 2017. Rhamnolipid biosurfcatnat production by Pseudomonas aeruginosa strain KVD-HR42 isolated from oil contaminated mangrove sediments. African Journal of Microbiology Research 11(6), 218-231.
  • DHAR, P., HAVSKJOLD, H., THORNHILL, M., ROELANTS, S., SOETAERT, W., KOTA, H.R., CHERNYSHOVA, I., 2020. Toward green flotation: Interaction of a Sophorolipid biosurfactant with a copper sulfide. Journal of Colloid and Interface Science 585, 386–99.
  • DIDYK, A.M., SADOWSKI, Z., 2012. Flotation of serpentinite and quartz using biosurfactants. Physicochemical Problems of Mineral Processing 48(2), 607–18.
  • FAZAELIPOOR, M.H., KHOSHDAST, H., RANJBAR, M., 2010. Coal flotation using a biosurfactant from Pseudomonas aeruginosa as a frother. Korean Journal of Chemical Engineering 27(5), 127-1531.
  • FOZOONI, S., KHOSHDAST, H., HASSANI, H., HAMIDIAN, H., 2017. Synthesis of oxazolone and imidazolone derivatives in presence of H2O2 promoted fly ash as a novel and efficient catalyst. Journal of Sciences. 28(3), 221–230.
  • GHOLAMI, A.R., ASGARI, K., KHOSHDAST, H., HASSANZADEH, A., 2022. A hybrid geometallurgical study using coupled Historical Data (HD) and Deep Learning (DL) techniques on a copper ore mine. Physicochemical Problems of Mineral Processing 58(3), 147841.
  • GHOLAMI, A.R., KHOSHDAST, H., 2020. Using artificial neural networks for the intelligent estimation of selectivity index and metallurgical responses of a sample coal bioflotation by rhamnolipid biosurfactants. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. Doi: 10.1080/15567036.2020.1857477.
  • GHOLAMI, A.R., KHOSHDAST, H., HASSANZADEH, A., 2021. Using hybrid neural networks/genetic and artificial bee colony algorithms to simulate the bio-treatment of dye-polluted wastewater using rhamnolipid biosurfactants. Journal of Environmental Management 299, 113666.
  • HASSANZADEH, A., HOANG, D.H., BROCKMANN, M., 2020. Assessment of flotation kinetics modeling using information criteria; case studies of elevated-pyritic copper sulfide and high-grade carbonaceous sedimentary apatite ores. Journal of Dispersion Science and Technology 41(7), 1083-1094.
  • HASANIZADEH, I., KHOSHDAST, H., ASGARI, K., HUANG, Q., RAHMANIAN, A., 2023a. Studying the influence of cationized pyrolysis oil on the flotation of a bituminous coal using historical data design. International Journal of Coal Preparation and Utilization. Doi: https://doi.org/10.1080/19392699.2023.2254708
  • HASANIZADEH, I., KHOSHDAST, H., SHOJAEI, V., YANG, X., ASGARI, K., 2023b. Flotation response of a bituminous coal sample in presence of a pyrolitic oil recycled from used car tires. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 45(1), 1918-1936.
  • HAYNES, W.M., 2016. CRC Handbook of chemistry and physics. 97th Edition, CRC Press, USA.
  • JADHAV, M., KALME, S., TAMBOLI, D., GOVINDWAR, S., 2011. Rhamnolipid from Pseudomonas desmolyticum NCIM‐2112 and its role in the degradation of Brown 3REL. Journal of Basic Microbiology 51(4), 385-396.
  • JARKANI, S.A., KHOSHDAST, H., SHARIAT, E., SAM, A., 2014. Modeling the effects of mechanical parameters on the hydrodynamic behavior of vertical current classifiers. International Journal of Mining Science and Technology 24(1), 123–127.
  • KHOSHDAST, H., 2019. Practical problems in froth flotation. Hormozgan University Press, Tehran, Iran.
  • KHOSHDAST, H., ABBASI, H., SAM, A., AKBARI NOGHABI, K., 2012b. Frothability and surface behavior of a rhamnolipid biosurfactant produced by Pseudomonas aeruginosa MA01. Biochemical Engineering Journal 64, 127-134.
  • KHOSHDAST, H., HASSANZADEH, A., KOWALCZUK, P.B., FARROKHPAY, S., 2022. Characterization of flotation frothers – A review. Mineral Processing and Extractive Metallurgy Review. Doi: 10.1080/08827508.2021.2024822.
  • KHOSHDAST, H., GHOLAMI, A.R., HASSANZADEH, A., NIEDOBA, T., SUROWIAK, A., 2021. Advanced simulation of removing chromium from a synthetic wastewater by rhamnolipidic bioflotation using hybrid neural networks with metaheuristic algorithms. Minerals 14, 2880.
  • KHOSHDAST, H., SAM, A., 2012. An efficiency evaluation of iron concentrates flotation using rhamnolipid biosurfactant as a frothing reagent. Environmental Engineering Research 17(1), 9-15.
  • KHOSHDAST, H., SAM, A., MANAFI, Z., 2012a. The use of rhamnolipid biosurfactants as a frothing agent and a sample copper ore response. Minerals Engineering 26, 41–49.
  • KHOSHDAST, H., SAM, A., VALI, H., NOGHABI, K.A., 2011. Effect of rhamnolipid biosurfactants on performance of coal and mineral flotation. International Biodeterioration & Biodegradation 65, 1238–1243.
  • KHOSHDAST, H., SHOJAEI, V., 2012. Ash removal from a sample coal by flotation using rhamnolipid biosurfactants. Journal of Mining World Express 1(2), 39–45.
  • KHOSHDAST, H., SHOJAEI, V., KHOSHDAST, H., 2017. Combined application of computational fluid dynamics (CFD) and design of experiments (DOE) to hydrodynamic simulation of a coal classifier. International Journal of Mining and Geo-Engineering 51(1), 9–24.
  • MAHMOODABADI, M., KHOSHDAST, H., SHOJAEI, V., 2019. Efficient dye removal from aqueous solutions using rhamnolipid biosurfactants by foam flotation. Iranian Journal of Chemistry and Chemical Engineering 38(4), 127–140.
  • MIRSHEKARI, S., SHOJAEI, V., FOZOONI, S., KHOSHDAST, H., 2023. Efficient cadmium removal from synthetic wastewater using a bipolymeric/Fe3O4 nanocomposite loaded on coal tailings. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 45(1), 280–298.
  • MIRSHRKARI, S., SHOJAEI, V., KHOSHDAST, H., 2022. Adsorptive study of cadmium removal from aqueous solution using a coal waste loaded with Fe3O4 nanoparticles. Journal of Mining and Environment 13(2), 527–545.
  • MONTGOMERY, D.C., 2020. Design and analysis of experiments. 10th Edition, Wiley, USA.
  • MOOSAKAZEMI, F., GHASSA, S., JAFARI, M., CHEHREH CHELGANI, S., 2022. Bioleaching for recovery of metals from spent batteries – a review. Mineral Processing and Extractive Metallurgy Review. Doi:10.1080/08827508.2022.2095376.
  • ÖZ AKSOY, D., ÖZDEMIR, S., KOCA, S., ÇAKMAK, H., AYTAR ÇELIK, P., ÇABUK, D.D.A., KOCA, H., 2022. Modelling of magnesite flotations with two different collectors: Biocollector and oleate. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 30(1), 106–14.
  • OZDEMIR, G., PEKER-BASARA, S., HELVACI, S., 2004. Effect of pH on the surface and interfacial behavior of rhamnolipids R1 e R2. Colloids and Surfaces: A: Physicochemical and Engineering Aspects 234(1–3), 135–43.
  • PARYAD, H., KHOSHDAST, H., SHOJAEI, V., 2017. Effects of operating parameters on time-dependent ash entrainment behaviour of a sample coal flotation. Journal of Mining and Environment 8(3), 337–357.
  • PATEL, S., HOMAEI, A., PATIL, S., DAVEREY, A., 2019. Microbial biosurfactants for oil spill remediation: Pitfalls and potentials. Applied Microbiology and Biotechnology 103(1), 27–37.
  • RAWLINGS, D.E., JOHNSON, D.B., 2019. The microbiology of biomining: Development and optimization of mineral-oxidizing microbial consortia. Microbiology 153(2), 315–24.
  • SHAMI, R.B., SHOJAEI, V., KHOSHDAST, H., 2021. Removal of some cationic contaminants from aqueous solutions using sodium dodecyl sulfate-modified coal tailings. Iranian Journal of Chemistry and Chemical Engineering 40(4), 1105–1120.
  • SHOJAEI, V., KHOSHDAST, H., 2018. Efficient chromium removal from aqueous solutions by precipitate flotation using rhamnolipid biosurfactants. Physicochemical Problems of Mineral Processing 54(3), 1014–25.
  • SIMÕES, C.R., HACHA, R.R., MERMA, A.G., TOREM, M.L., 2020. On the recovery of hematite from an iron ore fine fraction by electroflotation using a biosurfactant. Minerals 10(12), 1057.
  • SZYMANSKA, A., SADOWSKI, Z., 2010. Effects of biosurfactants on surface properties of hematite. Adsorption 16(4–5), 233–39.
  • WAHYUNINGSIH, T., KHODIJAH CHAERUN, S., SANWANI, E., 2020. Characterization of interaction of biosurfactant-producing bacteria with pyrite minerals as an alternative to depressant reagents in the bioflotation process of copper sulfide minerals that are more environmentally friendly. AIP Conference Proceedings 2245, 080005.
  • WANG, L., KAMENNAYA, N., COHEN, M.F., LI, X., 2022. Highlighting the role of microbes in greener wastewater treatment. Frontiers in Environmental Science 10. Doi:10.3389/fenvs.2022.891761.
  • ZAHAB-NAZOURI, A., SHOJAEI, V., KHOSHDAST, H., HASSANZADEH, A., 2022. Hybrid CFD-experimental investigation into the effect of sparger orifice size on the metallurgical response of coal in a pilotscale flotation column. International Journal of Coal Preparation & Utilization 42(3), 349–68.
  • ZARANDI, M.P., KHOSHDAST, H., DAREZERESHKI, E., SHOJAEI, V., 2020. Efficient cadmium removal from aqueous environments using a composite produced by coal fly ash and rhamnolipid biosurfactants. Journal of Mineral Resources Engineering 5(3), 28-30.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9354357-dec1-45cf-aeb7-6c158febff3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.