PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrological Study and Hydraulic Modeling of Flood Risk in the Watershed of the Oued Lahdar (Upper Inaouene, Morocco)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The floods of the Lahdar River cause repeated inundations and damage to road infrastructures, particularly crossing structures in the territorial center of Had Msila. Our study involved the application of various methods to estimate flood flows for different return periods along the Lahdar River. The selected flows were chosen after a comparative analysis of values calculated by the different methods used. These results served as the basis for hydraulic modeling aimed at assessing water levels to establish risk zone mapping. This step is crucial in flood risk assessment. Two main approaches were distinguished: hydrometeorological methods, based on regional parameters derived from rainfall data, and empirical methods, used in the absence or with limited data on flood flows in a given region. Hydraulic modeling was carried out using two software programs: a Geographic Information System (GIS) such as Arc-GIS, and a specific river modeling software like Hec-Ras, allowing for the numerical representation of the natural state of the territory. The results obtained serve as the foundation for all river hydraulic modeling, thereby facilitating flood prediction and hydrological risk management in floodplains. Modeling Lahdar River floods in the studied sections enables the prediction of flood risk and its impacts on constructions and infrastructure in the Had Msila Center.
Twórcy
  • Laboratory EH3D, Department of Geography, University of Sidi Mohammed Ben Abdellah, Route d’Imouzzer, P.O. Box 2202, 30 000 Fez, Morocco
  • Laboratory EH3D, Department of Geography, University of Sidi Mohammed Ben Abdellah, Route d’Imouzzer, P.O. Box 2202, 30 000 Fez, Morocco
  • Laboratory LEFGE, Department of Environment, Faculty of Sciences and Techniques, University of Sidi Mohammed Ben Abdellah, Fez, Morocco, Route d’Imouzzer, P.O. Box 2202, 30 000 Fez, Morocco
  • Laboratory of Land Balance and Spatial Planning,Department of Geography, Faculty of Letters and Human Sciences Rabat, Mohamed V University, Rabat, Morocco
  • Laboratory EH3D, Department of Geography, University of Sidi Mohammed Ben Abdellah, Route d’Imouzzer, P.O. Box 2202, 30 000 Fez, Morocco
  • Department of Geography, Abdelmalek Essaadi University, FLSH, Martil, Morocco
Bibliografia
  • 1. ABHS. 2005. Study on the implementation of river development for the protection of the city of Fes against floods. Sub-mission 1-1: Validation of selected developments. Market No: 37/2005, Fes. (in French)
  • 2. ABHS., EHMHVB. 2005. Hydraulic Basin Agency of the Sebou Basin, Hydrological Study and Hydraulic Modeling of the city of Boulemane. 20 P + annexes. (in French)
  • 3. Ahattab J. 2016. Adaptation of flood estimation methods to recent extreme hydrological data from the Tensift and Essaouira watersheds, Thesis, Faculty of Sciences Semlalia - Marrakech, 76–102. (in French)
  • 4. Alam F., Salam M., Khalil N.A. Khan O., Khan M. 2021. Rainfall trend analysis and weather forecast accuracy in selected parts of Khyber Pakhtunkhwa, Pakistan. SN Appl. Sci. 3, 575. https://doi.org/10.1007/s42452-021-04457-z
  • 5. Alfieri L; Bisselink B; Dottori F; Naumann G; de Roo A; Salamon P; Wyser K; Feyen L. 2017. Global projections of river flood risk in a warmer world. Earth’s Future, 5, 171–182. https://doi.org/10.1002/2016EF000485
  • 6. Azidane H., Benmohammadi A., Hakkou M., Magrane B., Haddout S. 2018. A Geospatial approach for assessing the impacts of sea-level rise and flooding on the Kenitra coast (Morocco). J. Mater. Environ. Sci. 9(5), 1480–1488. https://doi.org/10.26872/jmes.2018.9.5.162
  • 7. Brochard F., and Monfort M. 2008. Evaluation of characteristic flow rates in non-gauged watersheds in French Guiana [Report]. - Cayenne: Regional Directorate of the Environment of French Guiana, 76. (in French)
  • 8. CFGB. 1994. Dam Project Floods: Gradex Method, 18th CIGB Congress.
  • 9. CFGB. 1994. French Committee on Large Dams. Dams and Reservoirs No. 2, Dam Project Floods: Gradex Method, France. (in French).
  • 10. Chapi K, Singh V.P, Shirzadi A, Shahabi H, Bui D.T, Pham B.T, Khosravi K. 2017. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ. Model. Softw. 95, 229–245. https://doi.org/10.1016/j.envsoft.2017.06.012
  • 11. Dolchinkov N.T. 2024. Natural Emergencies and Some Causes of Their Occurrence: a Review. Trends in Ecological and Indoor Environment Engineering, 2(1), 18–27. https://doi.org/10.62622/TEIEE.024.2.1.18-27
  • 12. El Alaoui F.A., and Saidi. E.E. 2014. Simulation and spatialization of flood risk in an anthropized valley: the case of the Ourika Valley (High Atlas, Morocco). European Scientific Journal June 2014 edition, 10(17).
  • 13. Elalem S., Pal I. 2015. Mapping the vulnerability hotspots over Hindu-Kush Himalaya region to flooding disasters. Weather and Climate Extremes, 8, 46–58. https://doi.org/10.1016/j.wace.2014.12.001
  • 14. ESRI. 2011. Arc Hydro Geoprocessing Tools [Report]: Tutorial. - New York.
  • 15. Gartet A., and Gartet J. 2003. Floods and Inundations of the Lebene River (Central Pre-Rif). Review AL Misbahia No.6, FLSH publications. Sais Fes, 37–63. (in French)
  • 16. Gray D., and Wigham J. 1972. Precipitation leading to peak flows [Section] //Manual of Hydrological Principles. – Ottawa, Canada: National Canadian Committee of the International Hydrological Decade, 8.
  • 17. Gresillon. J.M. 2004. Floods, Hazard, and Stakes in the Context of Climate Change, Proceedings of the ONERC Symposium, Local Authorities and Climate Change: What Adaptation Strategies?, Paris.
  • 18. Guillot P., and Duband D. 1967. The Gradex method for calculating the probability of floods from rainfall, in Floods and Their Computation. Proceedings of the Leningrad Symposium, IASH Publ. 84, 560–569. (in French)
  • 19. Gumbel E.J. 1935. Extreme values of statistical distributions. Ann. Inst. H. Poincaré 5(2): Retrieved 2009-04-01. 115–158. (in French)
  • 20. Hamouch C., and Chaaouan J. 2023. Prediction of Floods in the Inaouène River Using Statistical Methods in Northern Morocco. European Scientific Journal, ESJ. 19(33).
  • 21. Hazan R., lazarevic R. 1969. Determination of maximum flows and flood hydrograph [Report]. - Rabat: National Office of Irrigation, 354–361. (in French)
  • 22. Jarvis A., Guevara E., Isaak Reuter H., Nelson A. 2008. Hole-filled seamless SRTM [Online]– International Centre for Tropical Agriculture (CIAT), http://srtm.csi.cgiar.org
  • 23. Karrouchi M., Touhami M.O., Oujidi M., Chourak M. 2016. Mapping of flooding risk areas in the Tangier-Tetouan region: Case of Martil Watershed (Northern Morocco). International Journal of Innovation and Applied Studies 14, 1019–1035. Innovative Space of Scientific Research Journals http://www.ijias.issr-journals.org/
  • 24. Kichigina N.V. 2021. Floods in Siberia: geographical and statistical analysis for the period of climate change. Vestnik of Saint Petersburg University. Earth Sciences, 66(1), 41–60. https://doi.org/10.21638/spbu07.2021.103
  • 25. Kreis N. 2005. Modeling of floods in medium mountain rivers for integrated flood risk management: Application to the Thur valley (Haut-Rhin), Doctoral thesis, Water Science specialty, ENGREF, CEVH/ENGEES, 268 + annexes.
  • 26. Layan B. 2014. Delimitation of dam project floods, hydraulic modeling, and flood risk management in the Larbaâ Wadi watershed. case of the city of TAZA (MOROCCO). Faculty of Sciences Dhar El Mahrez. Doctoral Thesis. 170. (in French)
  • 27. Makhlouf Z. 1994. Complements on the GR4J rainfallrunoff model and attempt to estimate its parameters. Doctoral thesis, Université Paris Sud, Laboratory of Hydrology and Isotopic Geochemistry, Orsay. 434.
  • 28. Mark A., and Marek P.E. 2011. Hydraulic Design Manual. Texas Department of Transportation. Manual notice. 2011-1. TxDOT 10/201.
  • 29. Musy A., and Soutter M. 1991. Soil Physics. CH1015 Lausanne, META collection. 120.
  • 30. Ouarda T.BM., Gingras H., Bobee B., Lemonier M. 2001. Synthesis of simple regionalization methods [Report]: research report. - Quebec: INRS-Eau, 70.
  • 31. Prusov V.A., Doroshenko A.Y., Sologub, T.A. 2019. Atmospheric Processes in Urban Area Elements. Cybern Syst Anal, 55, 90–108. https://doi.org/10.1007/s10559-019-00115-w
  • 32. SEEE. 2009. State Secretariat for Water and the Environment Study of the national water strategy [Report]. – Rabat.
  • 33. Serhir N. 2010. Engineer Hydrology Course [Report]. - Casablanca: EHTP.
  • 34. Tien Bui D. Khosravi K. Li S., Shahabi H., Panahi M., Singh V.P., Chapi K., Shirzadi A., Panahi S., Chen W., Bin Ahmad B. 2018. New Hybrids of ANFIS with Several Optimization Algorithms for Flood Susceptibility Modeling. Water, 10, 1210. https://doi.org/10.3390/w10091210
  • 35. Torterotot J.P. 1993. The cost of flood damages: Estimation and analysis of uncertainties, Doctoral thesis, Environmental Sciences and Techniques specialty, Ecole Nationale des Ponts et Chaussées, 284.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9349fb4-b983-4ab1-98d3-ba9747fa3717
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.