
1. Introduction

Menno-Jan Kraak in (Kraak & Ormeling, 2021)
discusses the demand for sophisticated geo-
spatial data presentation for continuously in-
creasing amount of spatial data: “The ever more
detailed satellite imagery available, the increasing
number of sensor networks and new techniques
for analyzing textual sources with spatial refer-
ences like geoparsing all lead to highly varied
big data, characterized by large volumes of data,
coming available with high velocity.” It clearly
shows that amount of spatially enabled data is
growing, and on the other hand, demand for
data from various sources in spatial analyses
and presentations is growing too. It leads to
spatial big data solutions where data from
multiple sources is stored and analyzed (Lesz-
czynski & Crampton, 2016; Shekhar et al., 2012;
Yaragal, 2018). In addition, city planners and
people trying to build a city or an infrastructure

project that connects a city want to visualize
the whole thing in context. They want to see
the as-planned, the as-designed, and as-built
state in a dynamic, intelligent, useful, and persis-
tent city model (Esri, 2019). When considering
roads, bridges, waste treatment plants, gas
lines, etc., it is not enough to consider their
location and relationship. A broader context
needs to be considered, including environmen-
tal factors such as air quality, solar and wind
power capability, storm and flood hazards, fire
spread, aviation noise nuisance, soil quality,
and much more (Esri, 2022a; Esri, 2022b).
Taking this into account, Autodesk, the leader
in CAD1 and BIM2 software, and Esri, the leader

1 Computer-Aided Design – computer software for creating,
modifying, and analyzing engineering projects.

2 Building Information Modeling – a type of computer
software and management process of the building lifecycle.
International standard regulated by ISO 19650.

Polish Cartographical Review
Vol. 54, 2022, pp. 11–22

DOI: 10.2478/pcr-2022-0002
 Received: 21.03.2022
MICHAŁ WYSZOMIRSKI Accepted: 25.04.2022
Warsaw University of Technology
Faculty of Geodesy and Cartography
Warsaw, Poland
orcid.org/0000-0002-5407-0536; michal.wyszomirski@pw.edu.pl

Analysis of the possibility of using key-value store NoSQL databases
for IFC data processing in the BIM-GIS integration process

Abstract. The article discusses the possibility of using Redis key-value NoSQL database to process building
data in different BIM-GIS integration solutions. Whichever data integration model is adopted, it will require an
efficient serving of building data in Industry Foundation Classes (IFC) format. The author proposed a method
of processing building data in the Redis database to support the process of feeding IFC data to his own concept
of an integrated BIM-GIS database. However, other approaches to BIM-GIS integration, including the import
of IFC data to CityGML, or the construction of an integrated BIM-GIS solution based on data integration at the
application server level or client application in client-server environments, also require an efficient IFC data
serving mechanism. This article describes three methods of storing IFC data in a Redis database using different
data types and formats. The author conducted performance tests of the proposed methods in the processing
of fourteen test BIM models. The article contains detailed results of the model processing tests in the Redis
database.

Keywords: IFC, Redis, NoSQL, key-value store, BIM-GIS integration

© 2022 Author. This is an open access article licensed under the Creative Commons Attribution-NonCommercial-NoDerivs License
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

12 Michał Wyszomirski

in GIS3 software, established a cooperation to
put GIS and BIM data at the center of projects.
The goal is an integrated and collaborative work-
flow that improves understanding of projects
in context, reduces inefficiencies, and delivers
a more sustainable and resilient infrastructure
(Autodesk Inc., 2020). Both companies pro-
pose a holistic view, where GIS professionals
and AEC4 professionals integrate their unique
perspectives of infrastructure: the GIS profes-
sional provides insight into the natural and built
environment in a larger context. The AEC pro-
fessionals provide insight into detailed infra-
structure assets (Esri, 2022a; Esri, 2022b). It
enables the seamless GIS and BIM data flow
with a shared environment where GIS profes-
sionals and designers/engineers can collabo-
rate across the project life cycle by integrating
GIS and BIM platforms (Esri, 2022a; Esri,
2022b). The ESRI-Autodesk integration focuses
on extending the functionality of commercial
software to exchange data. ArcGIS can import
BIM data prepared by Autodesk software,
AutoCAD Civil, and Revit can use geospatial
data from ArcGIS (Kuehne & Hodge, 2022).

At the same time, ISO works on integrating BIM
and GIS data standards. ISO/TR 23262:2021
investigates barriers and proposes solutions to
improve interoperability between geospatial
and BIM domains (International Organization
for Standardization, 2021a). ISO/TS 19166:2021
defines the conceptual framework and mecha-
nisms for mapping information elements from
BIM to GIS to access the required information
based on specific user requirements (Interna-
tional Organization for Standardization, 2021b).
This article focuses on the BIM-GIS integration
process based on open standards and open-
-source software.

Building Information Modeling (BIM) is the
process of managing and coordinating work
related to the life cycle of a building using
a three-dimensional model. The AEC industry
uses BIM technology during design and exe-
cution works, and after its completion, it submits
the BIM model to the manager, who uses it to

3 Geographical Information System – (in the scope of this
article) a type of computer software to store, process, ana-
lyze, and visualize geospatial data. International standard
regulated by multiple ISO standards estabilished by ISO/TC
211 (Geographic information/Geomatics) Committee.

4 Architectural, Engineering, and Construction industry.

manage the property. At the same time, the
model is updated as part of management work.
Since BIM is a constantly updated building
model containing, in addition to graphic data,
also descriptive data, and technical documen-
tation, it is a valuable source of data about the
facility. It can be used to build Smart City solu-
tions that integrate geospatial data from GIS
systems with interior data, including technical
and operational data of buildings from BIM
systems. Integrating BIM and GIS data faces
several challenges, including technological dif-
ferences and utterly different data models.
However, resolving these barriers brings tangible
benefits for both parties. GIS systems obtain
a source of valuable data on individual buildings.
BIM systems gain access to GIS data and
technologies. Commercial agreement between
Esri and Autodesk and ISO standards are rela-
tively new attempts to integration of BIM and
GIS data. Various scenarios of data integration
from both systems are considered in scientific
projects for a long time (Biljecki et al., 2015;
Fosu et al., 2015; Guyo et al., 2021; Karimi
& Iordanova, 2021; Pauwels et al., 2017). In each
of them, a necessary element is the method of
processing BIM data stored in the IFC5 model
in a text file in this format. The IFC is a standard
data model and file format for storing and pro-
cessign building data. It is widely used as
exchange format of the BIM related data. The
author developed and described his own method
of BIM and GIS data integration (Wyszomirski
& Gotlib, 2020), in which he used a NoSQL6
database to preprocess IFC data. This allowed to
significantly improve and accelerate the process
of BIM data processing in the IFC format.

During the experiments with the integration
of BIM and GIS data, some problems were
observed with the efficiency of data processing
procedures because of the long time it took to
read a single IFC object from an IFC file. In the
test environment (workstation equipped with
a six-core processor, 32 GB RAM, Windows
operating system) in the case of a model con-
sisting of about 3 million objects, the reading

5 Industry Foundation Classes – data model and file for-
mat intended to describe architectural and construction in-
dustry data. International standard regulated by ISO 16739
(International Organization for Standardization, 2013).

6 NoSQL – generic term for all distributed databases whose
data model is optimized for unstructured data processing.

13Analysis of the possibility of using key-value store NoSQL databases for IFC data processing...

time for a single IFC object was about 1.5 sec-
onds, with a sequential search for objects in
a text file. The method of reading data in the
IFC model requires that even several hundred
IFC objects of about 20 different IFC classes
are used to describe a single building element,
such as a wall, a ceiling, or a room. The process
of reading the complete dataset for a single
building element can, therefore, take up to
several minutes. This time can be significantly
shortened by preloading the entire IFC model
into RAM before processing it. However, this
solution was rejected by the author because the
concept of BIM-GIS integrated solution assumes
work in an environment integrating BIM and GIS
data at the scale of at least the entire city, with
thousands of BIM models being processed
simultaneously. Loading many such models
into RAM while supplying BIM data into the
database was considered unacceptable. There-
fore, an additional attempt was made to use
the NoSQL database as an extra stage of data
processing. The use of NoSQL databases pro-
vided very quick access to individual elements
of the building model. Therefore, it was proposed
to introduce an additional stage to the process
of IFC data import into an integrated BIM-GIS
database, which consisted of rewriting the
contents of the IFC file into the NoSQL database
(of key-value store type) and executing the
necessary read operations within it. Redis data-
base was used for the experiment. Thanks to
this operation, very fast access to all elements of
the IFC model was obtained. With this approach,
the average time taken to read a single object
from an IFC file was one millisecond. The NoSQL
database can be used to obtain, in a very short
time, basic information about the modeled object,
such as the number of objects of particular IFC
classes in the processed model, the number of
buildings, floors, and rooms in the model, and
other structural elements, as well as the loca-
tion of the model. It allows performing statistical
analyses of the objects stored in it, which can
be used to check the correctness of importing
IFC data into an integrated BIM-GIS database
and provide additional information about the
model.

As part of the research work, the author
used three different data processing methods
using the NoSQL database working in the key-
-value model. The most popular database of
this type was selected for the test – Redis. The

test results, including the performance com-
parison, were described, and the most efficient
solution was proposed based on the results.

2. Materials and methods

The IFC format and model7 are dedicated to
the exchange of information with other IT sys-
tems. It is promoted as a universal data model
supporting data exchange and building lifecycle
support (Solibri, 2017). It is a text-based, object-
-modeled file format developed to facilitate in-
teroperability in the architectural and structural
engineering (AEC) industries. IFC is defined in
ISO 16739: 2013. The definition of the IFC data
model is described in the EXPRESS language8,
an industrial object data modeling language.
The IFC model provides a set of definitions for
all types of object elements found in construc-
tion, and the IFC is the structure for storing
these definitions in text data files. The IFC de-
finition allows for several file formats for data
transfer:

1. STEP9 IFC – the IFC model can be saved
in a STEP file, the format of which is sanctioned
by the ISO 10303-21 standard (International
Organization for Standardization, 2016).

2. IFCXML – the IFC model can be saved in
an XML10 file, the format of which is a subset
of Standard Generalized Markup Language
(SGML) regulated by ISO 8879 (International
Organization for Standardization, 1986) and
sanctioned by the W3C specification (W3C,
2015).

7 IFC (Industry Foundation Classes) was created by the
Industry Alliance for Interoperability, established in 1994
by Autodesk. In 1997, the name of the consortium was
changed to International Alliance for Interoperability in order
to emphasize the emphasis on cooperation between many
industries, both in the development of the standard itself
and in its use. Currently, the consortium is called building-
SMART.

8 The EXPRESS language is described in the ISO 10303
standard “Standard for the Exchange of Product model
STEP” and standardized in 1994 by ISO 10303-11 (Interna-
tional Organization for Standardization, 2004).

9 STandard for the Exchange of Product model data –
data model and file format for representing and exchanging
product manufacturing information. International standard
regulated by ISO 10303.

10 Extensible Markup Language – a markup language
and file format for storing and transmitting data. Internatio-
nal standard regulated by ISO 20022.

14 Michał Wyszomirski

3. IFCZIP – is an IFC file in XML format packed
with the Deflate compression algorithm based
on the Lempel-Ziv 77 (LZ77) dictionary data
compression streaming method and Huffman
coding.

Transfer of BIM data with IFC files presents
many problems: the files are large, and pro-
cessing is time-consuming.

Redis is currently the most popular key-value
database11 by db-engines.com (DB-Engines,
2022). In terms of compliance with the CAP
theorem12, this database operates in the CP
model (consistency and partition tolerance
without ensuring continuous data availability).
Salvatore Sanfilippo wrote the system in 2006
in the C language (Da Silva & Tavares, 2015).
Redis stands for ‘REmote DIctionary Server’.
Currently, work on the development of the Redis
database is financed by Redis Labs, and the
database is available under a BSD license13
(Redis Labs, 2016). Redis is a data structure
store that is stored in the operating memory of
a server (Seguin, 2015). It is commonly used
as a database, cache, and message broker
(Haber, 2017). Redis has its own query language.
In addition, libraries allowing access to the
Redis database are available for the most po-
pular programming languages. Redis is a data
structure server with an in-memory dataset
optimized for speed of data access. It is called
a data structure server and not simply a key-
-value store because Redis implements data
structures allowing assigning different data
structures to keys stored in the database. This
combination of flexibility and speed makes Redis
the ideal tool for many applications (Macedo
& Oliveira, 2011).

The main advantage of NoSQL is that there
is no concept of normalization. This is the reason
why NoSQL database gives more performance
when seen against a normalized SQL database.
There is a trade-off in that data consistency is
sacrificed in the NoSQL database, but the ben-

11 Key-value database – a database that uses a key-value
data model to store data.

12 Consistency, Availability, Partition tolerance – theorem
is also known as Brewer’s Theorem; it states that any distri-
buted data store can only provide two of the three attributes:
Consistency, Availability, Partition tolerance.

13 BSD License (Berkeley Software Distribution License)
– a license to distribute software under the Free Software
Principles of the University of California, Berkeley.

efits achieved in doing so are higher. Clearly,
NoSQL databases are built with one central
feature, which is performance. So, to achieve per-
formance, data consistency and reliability are sac-
rificed at various levels (Chinnachamy, 2014).

In NoSQL databases using the key-value
model, both key and value are typically a string.
In the Redis database, the value is not limited
to a simple string, but can also contain more
complex data structures (Redis Labs, 2017).
The list of available data types in the Redis da-
tabase includes (Da Silva & Tavares, 2015):

• Strings, that can also be treated as num-
bers (integer, float), texts (unformatted or in XML,
JSON14, HTML15 format), or as binary strings
(video files, graphic files, and audio files) de-
pending on how applications use them. The
value of a String field cannot exceed 512 MB.

• Lists that can be thought of as simple col-
lections, stacks, or queues.

• Hash tables are indexed arrays that allow
searching for a value using an index based on
the given key, the hash function determines
the index of the value in the table.

• Sets, which are an unordered collection of
unique values. Internally, the set is implemented
with hash arrays.

• Sorted sets are very similar to sets, but
each value is assigned a weight by which the
set is sorted.

• HyperLogLog, which is a special data type
that allows the execution of the HyperLogLog
algorithm to determine the number of unique
values in a set. This algorithm is based on
a probabilistic determination of the number of
elements. It allows to quickly determine the
number of elements of a set with a high proba-
bility, using a very small amount of operational
memory (Flajolet et al., 2007).

In IFC files, data in the form of a list of objects
is identified by an identifier assigned to each
object that is unique in the scale of the entire
IFC file. Later in this article, the internal identi-
fier is referred as ifcid. The ifcid identifier in the
IFC file is a numeric value preceded by a # char-
acter. An example, one line of the IFC file

14 JavaScript Object Notation – an open standard file
format and data interchange format. International standard
regulated by ISO 21778.

15 HyperText Markup Language – a standard markup
language for documents designed to be displayed in a Inter-
net browser. International standard regulated by ISO 8859.

15Analysis of the possibility of using key-value store NoSQL databases for IFC data processing...

describing an object of IfcBuilding class looks
like this:
#62=IFCBUILDING(‘3cNcsqqFH6jAJu-

Rvg0K0Rk’,#13,’Default Building’
,$,$,#60,$,$, .ELEMENT.,$,$,$);

In this example, #62 is the local ifcid of the
IFC object, while the text after the equal sign (=)
is the description of the IFC object consisting
of its class name (IfcBuilding – building in the
IFC model) and its attributes that are defined
in the IFC schema. The list of attribute names
of the IfcBuilding class object is presented in
table 1.

The object of IfcBuilding class is related to
the objects of other classes that define the
features of the building. For example, the Rep-
resentation attribute points to an IfcProduct-
Representation object that aggregates all the
geometric elements that make up the geometric
representation of the object. Object descriptive
attributes are assigned to an IfcBuilding object
through an IfcRelAggregates aggregate object
that identifies the IfcPropertySet objects assi-
gned to an IfcBuilding object that contains sets
of attributes. The stories, which are a compo-
nent element in the spatial structure of the
IfcBuilding object, are assigned to the IfcBuilding
class object through the IfcRelAggregates class
object being an aggregate element which iden-
tifies the IfcBuildingStorey class objects assigned
to the IfcBuilding object (Gotlib & Wyszomirski,
2017).

Redis allows writing values assigned to a given
key and reading these values by key. Several

Tab. 1. IfcBuilding class attributes (from the IFC model)
including attributes inherited from parent classes

Attribute Type
GlobalId IfcGloballyUniqueId

(STRING)
OwnerHistory IfcOwnerHistory (ENTITY)
Name IfcLabel (STRING)
Description IfcText (STRING)
ObjectType IfcLabel (STRING)
ObjectPlacement IfcObjectPlacement

(ENTITY)
Representation IfcProductRepresentation

(ENTITY)
LongName IfcLabel (STRING)
CompositionType IfcElementCompositionEnum

(ENUM)
ElevationOfRefHeight IfcLengthMeasure (REAL)
ElevationOfTerrain IfcLengthMeasure (REAL)
BuildingAddress IfcPostalAddress (ENTITY)

Tab. 2. An example of storing IFC data for an object of IfcBuilding class in the Redis database using a string value

Key Value

#62
IFCBUILDING(‚3cNcsqqFH6jAJuRvg0K0Rk’,#13,’Default Building’,$,$,#60, $,$,.
ELEMENT.,$,$,$);

Tab. 3. An example of storing IFC data for an object of IfcBuilding class in the Redis database using the hash table

Key Value

#62

IfcClass IFCBUILDING
GlobalId ‚3cNcsqqFH6jAJuRvg0K0Rk’
OwnerHistory #13
Name ‚Default Building’
Description $
ObjectType $
ObjectPlacement #60
Representation $
LongName $
CompositionType .ELEMENT.
ElevationOfRefHeight $
ElevationOfTerrain $
BuildingAddress $

16 Michał Wyszomirski

data types available in the Redis database can
be used to store IFC data, three of which seem
to be exceptionally well suited to the IFC model:

• Simple key of the string type, the value stored
in the string type.

• Simple key of the string type, the value stored
in the hash table type.

• Complex key of the string type, the value
stored in the string type.

Using the write method, where there is a simple
key of the string type and a value stored in the
string type, an example IfcBuilding object with
ifcid equal to #62 will look like presented in
table 2.

Using the write method, where there is a simple
key of the string type and a value stored in the
hash table type, an example IfcBuilding object
with ifcid #62 will look as shown in table 3.

Using the write method, where there is a simple
key of the string type and a value stored in the
hash table type, an example IfcBuilding object
with ifcid #62 will look as shown in table 4.

2.1. Test environment

The experiments were conducted using an
environment consisting of a workstation equip-
ped with a six-core processor, 32 GB RAM,

a Windows operating sys-
tem, and a Redis data-
base server equipped with
a quad-core processor,
8 GB RAM, and CentOS
7 operating system. The
database server would
run as a virtual machine
running on a host running
Microsoft Hyper-V Server.
Originally, the Redis data-
base server was installed
on a virtual machine with
the Windows Server ope-
rating system. However,
since the test process
took about a week of con-
tinuous operation, an un-
expected restart of the
Windows Server operat-
ing system caused by
Windows Update inter-
rupted its operation, making
Windows Server unreliable
to such tests. The next
step was to transfer the
test environment to the
CentOS system.

2.2. Test data

Fourteen IFC models
of different sizes and
levels of detail and repre-
senting different build-
ings or elements of the
buildings were used for
the tests. Some models

Tab. 4. An example of storing IFC data for an object of IfcBuilding class in the
Redis database using composite keys and string values

Key Value
#62:IfcClass IFCBUILDING
#62:GlobalId ‚3cNcsqqFH6jAJuRvg0K0Rk’
#62:OwnerHistory #13
#62:Name ‚Default Building’
#62:Description $
#62:ObjectType $
#62:ObjectPlacement #60
#62:Representation $
#62:LongName $
#62:CompositionType .ELEMENT.
#62:ElevationOfRefHeight $
#62:ElevationOfTerrain $
#62:BuildingAddress $

Tab. 5. Summary of basic data on all models used in the test, including the
number of buildings, floors, rooms, doors, and windows in each model and the
total number of all objects in the model

Model IFC
Number of Object

countbuildings floors rooms doors windows
01.ifc 1 14 1383 718 1132 3140740
02.ifc 1 8 480 559 385 2651693
03.ifc 1 8 258 265 349 2094772
04.ifc 1 8 258 265 349 1897218
05.ifc 1 13 1661 1896 702 1421804
06.ifc 1 9 2612 2623 3560 1204965
07.ifc 1 7 421 405 1589 726390
08.ifc 1 6 656 1068 160 526341
09.ifc 1 7 199 208 122 467901
10.ifc 1 10 136 152 170 329855
11.ifc 1 10 136 149 169 179709
12.ifc 1 3 71 59 25 160141
13.ifc 1 1 39 35 20 40094
14.ifc 1 1 0 1 5 2711

17Analysis of the possibility of using key-value store NoSQL databases for IFC data processing...

represent existing buildings, others are at
project stage only. Figure 1 visualizes the mod-
els in Solibri Anywhere software.

The smallest IFC model used in the tests
was a model of a very simple single-family house.
The entire model consisted of 2,711 objects.
The largest model in the test was a model of
a large office building with 14 floors and 1,383
rooms. The model of this building has 718 doors
and 1132 windows. In two cases (Object_3/

Object_4 and Object_10/Object_11), two mod-
els of the same building were used. However,
since they had different sizes and numbers of
objects, they were qualified for the test as dif-
ferent examples of IFC models. A summary of
basic data on all models used in the test, including
the number of buildings, floors, rooms, doors,
and windows in each model, and the total
number of all objects in the model, is presented
in table 5.

Fig. 1. Visualization of all models used in the test prepared in Solibri Anywhere. Top row left to right: Object_01,
Object_02, Object_03; second row left to right: Object_04, Object_05, Object_06; third row left to right: Object_07,
Object_08, Object_09; fourth row left to right: Object_10, Object_11, Object_12; last row left to right: Object_13,

Object_14

18 Michał Wyszomirski

Before starting the actual tests of data pro-
cessing with the use of the Redis database,
a test was performed consisting in comparing
the number of objects of individual IFC classes
in each of the models. This operation revealed
the details of each model, including their com-
plexity, and allowed further testing to be de-
signed. Table 6 summarizes the number of
objects and preprocessing times for each of
the IFC models under test.

2.3. Test process

The tests were carried out using scripts written
in the Python programming language. Four test
cases were planned and then performed:

• Search for an object with a given ifcid in an
IFC text file.

• Search for the object stored in the Redis
database in the case of writing data in the form
of a character string assigned to a simple key
containing only the IFC identifier (ifcid).

• Search for the same object stored in the
Redis database when saving data in the form
of a hash table.

• Search for the same object saved in the
Redis database in the case of saving data in the
form of separate strings of characters corre-
sponding to individual object attributes, assigned
to complex keys consisting of ifcid and the name
of the attribute. During the test, it was decided
to measure the access time to all object attri-
butes stored in separate keys in the Redis data-
base. It is worth noting, however, that when
a single IFC object is stored as multiple key-
-value pairs in the database, there is easy
access to selected object attributes.

3. Results

The performance test of the IFC data pro-
cessing process using the NoSQL key-value
database has been divided into several stages.
The first stage included the process of rewriting
the content of IFC files to the Redis database,
considering the three proposed data processing
models: text data, hash tables, and the use of
a complex key. The test results of rewriting the
data to the database are summarized in table 7.
The duration of the process is presented in
seconds. As it can be seen, the time to rewrite
the smallest model (Object_14.ifc) is from less

than a second for a text type to more than two
seconds for models using the hash table type
and complex keys. The rewrite time for the largest

Tab. 6. Summary of the number of objects and pre-
processing times for each IFC model tested

Model IFC Object count Preprocessing
time [s]

01.ifc 3140740 5,53271
02.ifc 2651693 4,45943
03.ifc 2094772 3,52175
04.ifc 1897218 3,26385
05.ifc 1421804 2,59090
06.ifc 1204965 2,18576
07.ifc 726390 1,24690
08.ifc 526341 0,95293
09.ifc 467901 0,79596
10.ifc 329855 0,55597
11.ifc 179709 0,29606
12.ifc 160141 0,25905
13.ifc 40094 0,06506
14.ifc 2711 0,00400

Tab. 7. List of IFC models rewriting times from text
files to the database, considering three IFC data
mod els in the Redis database: as a string, hash table,
and compound keys

Model
IFC

Rewrite file [s]

string hash table complex
key

01.ifc 993,88681 3946,96158 3913,15126

02.ifc 851,85908 2215,50767 2233,54447

03.ifc 658,24368 2041,04050 2058,39088

04.ifc 602,91097 1774,04592 1759,16744

05.ifc 451,36611 1715,56905 2039,94314

06.ifc 384,88137 1328,36712 1319,42996

07.ifc 230,97379 837,72939 843,46118

08.ifc 167,25845 712,85931 708,06758

09.ifc 150,78017 460,40673 455,09957

10.ifc 106,16182 300,98696 301,87119

11.ifc 58,20541 204,50587 204,45121

12.ifc 51,30364 136,93056 138,47969

13.ifc 12,92979 44,55429 44,10076

14.ifc 0,86345 2,45046 2,34236

19Analysis of the possibility of using key-value store NoSQL databases for IFC data processing...

model (Object_01.ifc) ranges from 16 minutes
to over an hour, depending on the data model
used.

The next stage of the test was to determine
the access time to a single object in the model.
When reading data sequentially from a text
file, the access time to data at the beginning of
the file is much shorter than for data at the end
of the file. This means that it is needed to read
almost the entire file to get to the items at the
end of the file. In the case of a database, the
access time to the data should be the same,
regardless of whether they were initially written
at the beginning of the file or at its end. To de-
termine the differences in access times to the
elements of the IFC model, a test was proposed.
It measures the access time to the first object,
the last object, and the object that is in the middle
of the IFC file content. To this end, the ifcid of the
first, middle, and last objects were specified.
A summary of the numbers of these facilities is
presented in table 8.

Then, the first, middle, and last objects read
time tests were performed in each model, con-
sidering different data storage models in the
database. For comparison, a test of reading
the same objects from IFC files was also per-
formed. The list of reading times for the first
object in each of the test models is presented
in table 9. As can be seen, the times of reading
data from the database are very similar for the
three data models and oscillate around one
millisecond. In the case of a text file, the reading
time of the first object ranges from 1 millisecond
to 2.5 milliseconds. Thus, it can be assumed
that the access time to the first object is com-
parable for the file and the database.

The summary of the reading times of the
middle object in each of the test models is pre-
sented in table 10. As can be seen, the times
of reading data from the database are very similar
to each other for the three data models and to
the test results with the first objects in the
models and oscillate within 1 millisecond. In
the case of a text file, the reading time of the
first object ranges from 2 milliseconds for the
smallest model (Object_14) to 1,7 seconds for
the largest model (Object_1).

The summary of the reading times of the last
object in each of the test models is presented
in table 11. As it can be seen, the times of reading
data from the database for the three data models
differ slightly. For most models, the reading

Tab. 8. List of ifcid of first, middle, and last objects in
test models

Model
IFC

Value of IfcId Object
countfirst middle last

01.ifc 1 2887599 5775198 3140740

02.ifc 1 5019298 10038596 2651693

03.ifc 1 1883932 3767864 2094772

04.ifc 1 1689045 3378090 1897218

05.ifc 1 715823 1431646 1421804

06.ifc 1 2379114 4758228 1204965

07.ifc 1 619285 1238570 726390

08.ifc 1 264894 529787 526341

09.ifc 1 418938 837875 467901

10.ifc 1 289098 578196 329855

11.ifc 1 158201 316402 179709

12.ifc 1 140622 281244 160141

13.ifc 1 35636 71272 40094

14.ifc 1 1356 2711 2711

Tab. 9. List of reading times for the first object in test
models from the database in each of the three pro-
posed data models and from a text file

Model
IFC

Search time – first object [s]

string hash
table

complex
key file

01.ifc 0,00073 0,02092 0,00073 0,00146

02.ifc 0,00100 0,00325 0,00037 0,00219

03.ifc 0,00090 0,00103 0,00064 0,00172

04.ifc 0,00089 0,00102 0,00037 0,00202

05.ifc 0,00063 0,00100 0,00055 0,00248

06.ifc 0,00094 0,00100 0,00055 0,00220

07.ifc 0,00080 0,00091 0,00045 0,00202

08.ifc 0,00080 0,00101 0,00073 0,00192

09.ifc 0,00054 0,00101 0,00079 0,00136

10.ifc 0,00089 0,00091 0,00055 0,00146

11.ifc 0,00063 0,00102 0,00037 0,00182

12.ifc 0,00266 0,00177 0,00074 0,00145

13.ifc 0,00072 0,00100 0,00064 0,00201

14.ifc 0,00072 0,00100 0,00054 0,00155

20 Michał Wyszomirski

time is still one millisecond, but for some of
them, this time has been extended to over five
milliseconds (hash table type for the Object_07
model). In the case of a text file, the reading
time of the first object ranges from 3 millisec-
onds for the smallest model (Object_14) to
3.3 seconds for the largest model (Object_1).

4. Discussion

The tests show that a simple search for an
IFC model object stored in the Redis database
can be up to 1000 times faster than the same
operation performed on a text file in the IFC
format. The use of the method of saving each
IFC object in the database in the form of a key
pair containing the ifcid identifier and a value
containing the entire description of the object
taken from the IFC file and written with a text
string allows the object to be read much faster
than from a text file. An application using this
data model will have to parse the content of
each line retrieved from the database in the
same way as it is done when reading an IFC file.
The use of hash tables is a slightly slower solu-
tion, but it allows to get a dictionary of attributes
instead of a string. Further processing of the
data will therefore be faster because no seria-
lization of the attributes is required anymore,
and the reading is done directly into the Python
dictionary type. The slowest is processing IFC
data with the use of complex keys, which are
built in the form of an ifcid identifier enriched
with the names of attributes. In this case, the
acceleration compared to reading from a text
file is lower. However, this method allows reading
selected individual IFC object attributes.

5. Conclusion

The Redis database has no mechanisms sup-
porting the search for items in the database.
Therefore, the Redis database cannot be used
to search for a specific class of IFC objects,
which is a common operation when processing
IFC files. This operation must be performed on
the application side, which reads the data from
the database and then processes it. In return,
Redis can deliver data very quickly according
to the given key, which significantly improves
the process of reading the BIM model saved in

Tab. 10. List of middle objects reading times in test
models from the database in each of the three pro-
posed data models and from a text file

Model
IFC

Search time – mid object [s]

string hash
table

complex
key file

01.ifc 0,00053 0,00072 0,00073 1,73017

02.ifc 0,00081 0,00072 0,00091 1,19712

03.ifc 0,00090 0,00082 0,00018 0,98712

04.ifc 0,00082 0,00091 0,00092 0,85776

05.ifc 0,00036 0,00100 0,00082 0,70924

06.ifc 0,00039 0,00072 0,00072 0,56832

07.ifc 0,00045 0,00064 0,00046 0,35663

08.ifc 0,00062 0,00100 0,00073 0,26228

09.ifc 0,00091 0,00073 0,00064 0,23009

10.ifc 0,00072 0,00109 0,00070 0,15792

11.ifc 0,00064 0,00101 0,00091 0,09083

12.ifc 0,00073 0,00082 0,00082 0,07735

13.ifc 0,00072 0,00082 0,00087 0,02165

14.ifc 0,00091 0,00064 0,00101 0,00273

Tab. 11. List of last objects reading times in test mod-
els from the database in each of the three proposed
data models and from a text file

Model
IFC

Search time – last object [s]

string hash
table

complex
key file

01.ifc 0,00341 0,00485 0,00462 3,36207

02.ifc 0,00100 0,00137 0,00090 2,44489

03.ifc 0,00320 0,00429 0,00127 2,03286

04.ifc 0,00597 0,00457 0,00072 1,74784

05.ifc 0,00100 0,00118 0,00073 1,41482

06.ifc 0,00092 0,00109 0,00091 1,14668

07.ifc 0,00711 0,00531 0,00081 0,72424

08.ifc 0,00684 0,01129 0,00065 0,54262

09.ifc 0,00346 0,00529 0,00090 0,46499

10.ifc 0,00154 0,00165 0,00173 0,31496

11.ifc 0,00118 0,00156 0,00147 0,17254

12.ifc 0,00109 0,00137 0,00120 0,15057

13.ifc 0,00146 0,00183 0,00101 0,04038

14.ifc 0,00090 0,00118 0,00091 0,00310

21Analysis of the possibility of using key-value store NoSQL databases for IFC data processing...

IFC. Comparing the reading time of a single
object from an IFC text file with the reading time
of the same object from the Redis database
shows significant differences in favor of the
database solution. The main benefit of using
Redis to store and preprocess building data in
IFC model is flexibility and speed. It allows
access to elements of building model in very
convenient way fitted to data model used by
application and also allows very fast access to
IFC data. The method of saving the IFC model

in the Redis database – in the form of strings,
hash tables, or in the form of compound keys
– should be adapted to the requirements of the
IFC data processing application. If Redis is to
be a tool that accelerates the simple reading of
the content of an IFC file, the use of strings is
sufficient. However, if the Redis database were
to provide more structured data, e.g., allow for
the retrieval of selected attributes of IFC objects,
the use of hash tables or complex keys is a more
beneficial solution.

Literature

Autodesk Inc. (2020). Autodesk & Esri Collaboration.
https://www.autodesk.com/solutions/bim/hub/
autodesk-esri

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., & Çöl-
tekin, A. (2015). Applications of 3D City Models:
State of the Art Review. ISPRS International Jour-
nal of Geo-Information, 4(4), 2842–2889. https://
doi.org/10.3390/ijgi4042842

Chinnachamy, A. (2014). Redis Applied Design Pat-
terns. Packt Publishing Ltd.

Da Silva, M. D., & Tavares, H. L. (2015). Redis Es-
sentials. Packt Publishing Ltd.

DB-Engines. (2022, April). DB-Engines Ranking –
popularity ranking of database management sys-
tems. https://db-engines.com/en/ranking

Esri. (2019). Esri-Autodesk Partnership. https://
www.esri.com/about/newsroom/arcnews/esri-au-
todesk-partnership/

Esri. (2022a). Esri & Autodesk Combining the power
of location and design. https://geobim.maps.arcgis.
com/apps/Cascade/index.html?appid=e613e7
f3157b45c09e9455e79912d2a4

Esri. (2022b). Esri i Autodesk − współpraca, która
łączy GIS i BIM. https://www.esri.com/pl-pl/about/
partners/our-partners/strategic-alliances/auto
desk

Flajolet, P., Fusy, É., Gandouet, O., & Meunier, F.
(2007). HyperLogLog: the analysis of a near-opti-
mal cardinality estimation algorithm. Discrete
Mathematics & Theoretical Computer Science,
DMTCS Proceedings, AH, 137–156. https://doi.
org/10.46298/dmtcs.3545

Fosu, R., Suprabhas, K., Rathore, Z., & Cory, C.
(2015). Integration of Building Information Mode-
ling (BIM) and Geographic Information Systems
(GIS)−A literature review and future needs. Proce-
edings of the 32nd International Conference of
CIB W78, Eindhoven, The Netherlands, 27–29 Octo-
ber, 196–204. http://itc.scix.net/paper/w78-2015-
paper-020

Gotlib, D., & Wyszomirski, M. (2017, November).
Ocena możliwości konwersji modeli BIM na mo-
dele GIS [Paper presentation]. XXVII Konferencja

Polskiego Towarzystwa Informacji Przestrzennej,
Warszawa, Polska.

Guyo, E., Hartmann, T., & Ungureanu, L. (2021). In-
teroperability between BIM and GIS through open
data standards: An overview of current literature.
LDAC2021 − 9th Linked Data in Architecture and
Construction Workshop. Luxembourg. http://ceur-ws.
org/Vol-3081/10paper.pdf

Haber, I. (2017). Redis for Geospatial Data. Redis Labs.
International Organization for Standardization.

(1986, October). ISO 8879:1986 Information pro-
cessing − Text and office systems − Standard Ge-
neralized Markup Language (SGML). https://www.
iso.org/standard/16387.html

International Organization for Standardization.
(2004, November). ISO 10303-11:2004 Industrial
automation systems and integration − Product data
representation and exchange − Part 11: Descrip-
tion methods: The EXPRESS language reference
manual. https://www.iso.org/standard/38047.html

International Organization for Standardization. (2013,
April). ISO 16739:2013 Industry Foundation Clas-
ses (IFC) for data sharing in the construction and
facility management industries. https://www.iso.
org/standard/51622.html

International Organization for Standardization.
(2016, March). ISO 10303-21:2016 Industrial au-
tomation systems and integration − Product data
representation and exchange − Part 21: Implemen-
tation methods: Clear text encoding of the exchange
structure. https://www.iso.org/standard/63141.html

International Organization for Standardization.
(2021, May a). ISO/TR 23262:2021. GIS (geospa-
tial) / BIM interoperability. https://www.iso.org/
standard/75105.html

International Organization for Standardization.
(2021, May b). ISO/TS 19166:2021. Geographic
information − BIM to GIS conceptual mapping
(B2GM). https://www.iso.org/standard/78899.html

Karimi, S., & Iordanova, I. (2021). Integration of BIM
and GIS for Construction Automation, a Systematic
Literature Review (SLR) Combining Bibliometric
and Qualitative Analysis. Archives of Computational

22 Michał Wyszomirski

Methods in Engineering, 28, 4573–4594. https://
doi.org/10.1007/s11831-021-09545-2

Kraak, M.-J., & Ormeling, F. (2021). Cartography.
Visualization of Geospatial Data. CRC Press Taylor
& Francis Group, LLC.

Kuehne, D., & Hodge, K. (2022). What’s Possible
with Esri Autodesk Integration. https://www.esri.
com/content/dam/esrisites/en-us/about/events/
media/UC-2019/technical-workshops/tw-6222-
911.pdf

Leszczynski, A., & Crampton, J. (2016). Introduction:
Spatial Big Data and everyday life. Big Data & So-
ciety. https://doi.org/10.1177/2053951716661366

Macedo, T., & Oliveira, F. (2011). Redis Cookbook.
O’Reilly Media, Inc.

Pauwels, P., Zhang, S., & Lee, Y.-C. (2017). Seman-
tic web technologies in AEC industry: A literature
overview. Automation in Construction, 73, 145–165.

Redis Labs. (2016, September 08). Redis. http://redis.io/
Redis Labs. (2017, July 18). An introduction to Redis

data types and abstractions. https://redis.io/topics/
data-types-intro

Seguin, K. (2015). The Little Redis Book. https://github.
com/karlseguin/the-little-redis-book

Shekhar, S., Gunturi, V. M., Evans, M. R., & Yang, K.
(2012). Spatial big-data challenges intersecting
mobility and cloud computing. MobiDE ‚12: Proceed-
ings of the Eleventh ACM International Workshop
on Data Engineering for Wireless and Mobile Ac-
cess, 1–6. https://doi.org/10.1145/2258056.2258058

Solibri. (2017, September 24). About BIM and IFC.
http://www.solibri.com/support/bim-ifc/

Wyszomirski, M., & Gotlib, D. (2020). A Unified Da-
tabase Solution to Process BIM and GIS Data.
Applied Sciences, 10(23), 8518. https://doi.org/
10.3390/app10238518

Yaragal, S. (2018, February 10). Big data in GIS
environment. https://www.geospatialworld.net/blogs/
big-data-in-gis-environment/

The World Wide Web Consortium (W3C). (2015).
W3C Recommendation. Extensible Markup Lan-
guage (XML) 1.0 (Fifth Edition). https://www.w3.
org/TR/xml/

