PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Antifouling and anticorrosive protection of renewable energy marine structures with TiO2-based enamel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biofouling is a significant problem that affects renewable energy marine structures (REMS), such as wind turbines and those designed for wave or tidal energy exploitation. Marine organisms, including algae, barnacles, and mollusks, attach themselves to the surface of these structures, which can lead to reduced efficiency and increased maintenance costs. In addition, biofouling can also cause corrosion, which can compromise the structural integrity of the offshore platforms. To combat this problem, several methods have been developed, including anti-fouling coatings, physical methods, and biological methods. Each method has its advantages and disadvantages, and the most effective solution often depends on the specific type of fouling and the location of the offshore structure. Effective biofouling prevention is essential for the safe and efficient operation of offshore structures and the protection of marine ecosystems. To prevent the spread of invasive species, an innovative ceramic coating has been designed and tested in accordance with ASTM-D3623 procedure. The investigation results revealed that, after four years of experimentation in a real environment, the biofouling growth observed in the splash zone of the antifouling paint was 129.76% higher than that of the titanium-based ceramic coating and it is expected that this difference will continue to grow over time.
Twórcy
autor
  • University of Cantabria, Santander, Spain
autor
  • University of Cantabria, Santander, Spain
  • University of Cantabria, Santander, Spain
  • University of the Basque Country, Portugalete, Spain
autor
  • University of Cantabria, Santander, Spain
Bibliografia
  • [1] Abbas, M., & Shafiee, M. (2020). An overview of maintenance management strategies for corroded steel structures in extreme marine environments. Marine Structures, 71, 102718. https://doi.org/10.1016/j.marstruc.2020.102718.
  • [2] Boullosa‐Falces, D., García, S., Sanz, D., Trueba, A., & Gomez‐Solaetxe, M. A. (2020). CUSUM chart method for continuous monitoring of antifouling treatment of tubular heat exchangers in open‐loop cooling seawater systems. Biofouling, 36(1), 73–85. https://doi.org/10.1080/08927014.2020.1715954.
  • [3] Boullosa‐Falces, D., Gomez‐Solaetxe, M. A., Sanchez‐Varela, Z., García, S., & Trueba, A. (2019). Validation of CUSUM control chart for biofouling detection in heat exchangers. Applied Thermal Engineering, 152. https://doi.org/10.1016/j.applthermaleng.2019.02.009.
  • [4] Boullosa‐Falces, D., Sanz, D. S., Garcia, S., Trueba‐ Castañeda, L., & Trueba, A. (2022). Predicting tubular heat exchanger efficiency reduction caused by marine biofilm adhesion using CFD simulations. Biofouling, 1–11. https://doi.org/10.1080/08927014.2022.2110493.
  • [5] Costa, F. C. R., Ricci, B. C., Teodoro, B., Koch, K., Drewes, J. E., & Amaral, M. C. S. (2021). Biofouling in membrane distillation applications ‐ a review.Desalination, 516, 115241.https://doi.org/10.1016/j.desal.2021.115241.
  • [6] García, S., & Trueba, A. (2018). Influence of the Reynolds number on the thermal effectiveness of tubular heat exchanger subjected to electromagnetic field‐based antifouling treatment in an open once‐through seawater cooling system. Applied Thermal Engineering, 140, 531–541. https://doi.org/10.1016/j.applthermaleng.2018.05.069.
  • [7] García, S., Trueba, A., Boullosa‐Falces, D., Islam, H., & Guedes Soares, C. (2020). Predicting ship frictional resistance due to biofouling using Reynolds‐averaged Navier‐Stokes simulations. Applied Ocean Research, 101. https://doi.org/10.1016/j.apor.2020.102203.
  • [8] Gkatzogiannis, S., Weinert, J., Engelhardt, I., Knoedel, P.,& Ummenhofer, T. (2019). Correlation of laboratory and real marine corrosion for the investigation of corrosion fatigue behaviour of steel components. International Journal of Fatigue, 126, 90–102. https://doi.org/10.1016/j.ijfatigue.2019.04.041.
  • [9] Łatka, L., Pawłowski, L., Winnicki, M., Sokołowski, P., Małachowska, A., & Kozerski, S. (2020). Review of Functionally Graded Thermal Sprayed Coatings. Applied Sciences, 10(15), 5153. https://doi.org/10.3390/app10155153.
  • [10] Li, H., Xin, L., Zhang, K., Yin, X., & Yu, S. (2022). Fluorine‐free fabrication of robust self‐cleaning and anticorrosion superhydrophobic coating with photocatalytic function for enhanced anti‐biofouling property. Surface and Coatings Technology, 438, 128406. https://doi.org/10.1016/j.surfcoat.2022.128406.
  • [11] Sanz, D. S., García, S., Trueba, A., Trueba‐Castañeda, L., Islam, H., Guedes Soares, C., & Boullosa‐Falces, D (2022). Numeric analysis of the biofouling impact on the ship resistance with ceramic coating on the hull. In Trends in Maritime Technology and Engineering Volume 1 (pp. 443–449). CRC Press. https://doi.org/10.1201/9781003320272‐49.
  • [12] Sanz, D. S., Garcia, S., Trueba, A., Vega, L. M., Trueba‐ Castaneda, L., & Boullosa‐Falces, D. (2021). Application of ceramic coatings to minimize the frictional drag penalty on ships. OCEANS 2021: San Diego – Porto, 1–5. https://doi.org/10.23919/OCEANS44145.2021.9706045.
  • [13] Sanz, D. S., García, S., Trueba, L., & Trueba, A. (2021). Bioactive Ceramic Coating Solution for Offshore Floating Wind Farms. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 15(2).
  • [14] Schultz, M. P. (2004). Frictional Resistance of Antifouling Coating Systems. Journal of Fluids Engineering, 126(6). https://doi.org/10.1115/1.1845552.
  • [15] Trueba, A., Vega, L. M., García, S., Otero, F. M., & Madariaga, E. (2016). Mitigation of marine biofouling on tubes of open rack vaporizers using electromagnetic fields. Water Science and Technology, 73(5), 1221–1229. https://doi.org/10.2166/wst.2015.597.
  • [16] Wang, R., Zhou, T., Liu, J., Zhang, X., Yang, J., Hu, W., & Liu, L. (2021). Designing novel anti‐biofouling coatings on titanium based on the ferroelectric‐induced strategy. Materials & Design, 203, 109584. https://doi.org/10.1016/j.matdes.2021.109584.
  • [17] Xia, D.‐H., Qin, Z., Song, S., Macdonald, D., & Luo, J.‐L. (2021). Combating marine corrosion on engineered oxide surface by repelling, blocking and capturing Cl−: A mini review. Corrosion Communications, 2, 1–7. https://doi.org/10.1016/j.corcom.2021.09.001.
  • [18] Yang, Y., Wu, Q., He, Z., Jia, Z., & Zhang, X. (2019). Seismic Collapse Performance of Jacket Offshore Platforms with Time‐Variant Zonal Corrosion Model. Applied Ocean Research, 84, 268–278. https://doi.org/10.1016/j.apor.2018.11.015.
  • [19] Yi, P., Jia, H., Yang, X., Fan, Y., Xu, S., Li, J., Lv, M., & Chang, Y. (2023). Anti‐biofouling properties of TiO2 coating with coupled effect of photocatalysis and microstructure. Colloids and Surfaces A. Physicochemical and Engineering Aspects, 656, 130357. https://doi.org/10.1016/j.colsurfa.2022.130357.
  • [20] Yu, Y., Wei, Y., Li, B., Gao, H., Liu, T., Luan, X., Qiu, R., & Ouyang, Y. (2022). Bioinspired metal‐organic framework‐based liquid‐infused surface (MOF‐LIS) with corrosion and biofouling prohibition properties. Surfaces and Interfaces, 34, 102363. https://doi.org/10.1016/j.surfin.2022.102363.
  • [21] Zhao, W., Yang, J., Guo, H., Xu, T., Li, Q., Wen, C., Sui, X., Lin, C., Zhang, J., & Zhang, L. (2019). Slime‐resistant marine anti‐biofouling coating with PVP‐based copolymer in PDMS matrix. Chemical Engineering Science, 207, 790–798. https://doi.org/10.1016/j.ces.2019.06.042.
  • [22] Zhou, X., Song, W., Yuan, J., Gong, Q., Zhang, H., Cao, X., & Dingwell, D. B. (2020). Thermophysical properties and cyclic lifetime of plasma sprayed SrAl 12 O 19 for thermal barrier coating applications. Journal of the American Ceramic Society, 103(10), 5599–5611. https://doi.org/10.1111/jace.17319.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c92fcd2e-2eea-447a-93b7-1e35f0c35d91
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.