Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The optimal tuning of mechanical systems in terms of torsional vibration magnitude is a very important function in flexible shaft couplings. Therefore, a flexible coupling with suitable dynamic properties, particularly dynamic torsional stiffness, has to be carefully chosen for each specific application. The current trend in the field of flexible shaft couplings, and the most noticeable in the automotive industry, is the development and utilization of highly flexible couplings, which means flexible couplings with a very low value of relative torsional stiffness. The aim of this article is to introduce a new type of flexible shaft coupling: a piston pneumatic flexible shaft coupling. This coupling was developed to improve the properties of pneumatic flexible couplings, especially the maximum angle of twist, in order to create a highly flexible pneumatic coupling. For illustration purposes, the piston pneumatic coupling is compared with the tangential pneumatic flexible shaft coupling of Type 3-1/110-T-C in terms of high flexibility characteristics, whereby the characteristic dimensions of both couplings are the same. Given that the piston pneumatic coupling has not been manufactured to date, only a computational model of this coupling was used. The results show that the design of the piston pneumatic flexible shaft coupling combines the advantages of a highly flexible and pneumatic shaft coupling.
Rocznik
Tom
Strony
193--203
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Faculty of Mechanical Engineering, Department of Construction, Automotive and Transport Engineering Technical University of Košice, Letná 9 Street, 042 00 Košice, Slovakia
Bibliografia
- 1. Bakowski H. J. Piwnik. 2016. „Quantitative and qualitative comparison of tribological properties of railway rails with and without heat treatment”. Archives Of Metallurgy And Materials 61(2): 469-474. DOI: 10.1515/amm-2016-0037.
- 2. Czech P. 2013. “Intelligent Approach to Valve Clearance Diagnostic in Cars”. Activities of Transport Telematics. TST 2013. Communications in Computer and Information Science 395: 384-391. DOI: https://doi.org/10.1007/978-3-642-41647-7_47.
- 3. Czech P., Mikulski J. 2014. “Application of Bayes Classifier and Entropy of Vibration Signals to Diagnose Damage of Head Gasket in Internal Combustion Engine of a Car”. Telematics - Support For Transport. TST 2014. Communications in Computer and Information Science 471: 225-232. DOI: https://doi.org/10.1007/978-3-662-45317-9_24.
- 4. Figlus Tomasz, Jozef Gnap, Tomas Skrucany, Branislav Sarkan, Jozef Stoklosa. 2016. „The Use of Denoising and Analysis of the Acoustic Signal Entropy in Diagnosing Engine Valve Clearance”. Entropy 18(7). Article Number: 253.
- 5. Figlus Tomasz, Stefan Liscak. 2014. „Assessment of the vibroactivity level of SI engines in stationary and non-stationary operating conditions”. Journal Of Vibroengineering 16(3): 1349-1359.
- 6. Grega Robert, Jozef Krajňák, Lucia Žuľová, Gabriel Fedorko, Vieroslav Molnár. 2017. “Failure analysis of driveshaft of truck body caused by vibrations”. Engineering Failure Analysis 79: 208-215. ISSN: 1350-6307. DOI: 10.1016/j.engfailanal.2017.04.023.
- 7. Gurský Pavol. 2011. Influence of Working Cycles Identification on Characteristics of Flexible Couplings and Their Comparison. PhD thesis. Košice, Slovakia: Technical University of Košice.
- 8. Homišin Jaroslav. 2016. “Characteristics of pneumatic tuners of torsional oscillation as a result of patent activity”. Acta Mechanica et Automatica 10(4): 316-323. ISSN: 1898-4088. DOI: 10.1515/ama-2016-0050.
- 9. Homišin Jaroslav, Peter Kaššay. 2014. “Optimal tuning of torsional oscillating mechanical systems”. In: Proceedings of the 54th International Conference of Machine Design Departments: Modern Methods of Construction Design: 63-69. Department of the Design of Machine Elements and Mechanisms, Technical University of Liberec, Czech Republic. 10-12 September 2013. Hejnice, Czech Republic. ISBN: 978-3-319-05203-8. DOI: 10.1007/978-3-319-05203-8_9.
- 10. IMI. N.d. “Compact air bellows”. Available at: https://www.imi-precision.com/uk/en/list/actuators/air-bellows.
- 11. Kardoš František. 2006. Theoretical and Experimental Analysis of Heat Generation in Pneumatic-Flexible Elements of Shaft Coupling. PhD thesis. Košice, Slovakia: Technical University of Košice.
- 12. Kyslan K., M. Rodič, Ľ. Suchý, Ž. Ferková, F. Ďurovský. 2017. “Industrial controller-based dynamometer with dynamic emulation of mechanical loads”. Electrical Engineering 99(4): 1245-1254. ISSN: 0948-7921. DOI: 10.1007/s00202-017-0626-z.
- 13. Liptai Pavol, Marek Moravec, Ervin Lumnitzer, Marcela Gergeľová. 2017. “Proposal of the sound insulating measures for a vibrational sorter and verification of the measured effectiveness”. Advances in Science and Technology-Research Journal11 (3): 196-203. ISSN: 2299-8624. DOI: 10.12913/22998624/76068.
- 14. Medvecká-Beňová Silvia, Ľubica Miková, Peter Kaššay. 2015. “Material properties of rubber-cord flexible element of pneumatic flexible coupling”. Metalurgija 54(1): 194-196. ISSN: 0543-5846.
- 15. Samociuk W., Z. Krzysiak, G. Bartnik, A. Skic, S. Kocira, B. Rachwal, H. Bakowski, S. Wierzbicki, L. Krzywonos. 2017. „Analysis of explosion hazard on propane-butane liquid gas distribution stations during self tankage of vehicles”. Przemysl Chemiczny 96(4): 874-879. DOI: 10.15199/62.2017.4.29.
- 16. STN 011413:1992. Mechanické kmitanie - Pružné hriadeľové spojky - Všeobecné požiadavky na skúšky. Praha: Vydavateľstvo noriem. [In Slovak: STN 011413:1992. Vibration - Resilient Shaft Couplings - General Requirements for Tests. Prague: Publisher of Standards.]
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c92f3663-56cb-4944-a4dd-2cc55d3ecd15