FREE PROBABILITY ON HECKE ALGEBRAS AND CERTAIN GROUP C*-ALGEBRAS INDUCED BY HECKE ALGEBRAS

Ilwoo Cho

Communicated by P.A. Cojuhari

Abstract. In this paper, by establishing free-probabilistic models on the Hecke algebras $\mathcal{H}(GL_2(\mathbb{Q}_p))$ induced by *p*-adic number fields \mathbb{Q}_p , we construct free probability spaces for all primes *p*. Hilbert-space representations are induced by such free-probabilistic structures. We study C^* -algebras induced by certain partial isometries realized under the representations.

Keywords: free probability, free moments, free cumulants, Hecke algebras, normal Hecke subalgebras, representations, groups, group C^* -algebras.

Mathematics Subject Classification: 05E15, 11R47, 46L54, 47L15, 47L55.

1. INTRODUCTION

In this paper we study free-probabilistic models for *Hecke algebras* and study representations under the models, and investigate groups generated by certain operators under the representations. In [7], the author and Gillespie considered certain embedded free-probabilistic subalgebras of Hecke algebras induced by *p*-adic number fields for primes p. And, in [2], the author extended the free-probabilistic representations of [7] to those fully on the given Hecke algebras, and investigated elements of Hecke algebras as operators realized under the representations. Especially, the spectral theory of such Hilbert-space operators was considered in [2]. As a continuation, here, we keep studying free probability on the Hecke algebras in the extended sense of [2], and concentrate on studying certain group C^* -(sub-)algebras determined by the representations (under quotient).

1.1. BACKGROUND

We have considered how *primes* (or *prime numbers*) act on operator algebras. The relations between primes and operator algebra theory have been studied from various

© AGH University of Science and Technology Press, Krakow 2016

different approaches. For instance, in [1], we studied how primes act "on" certain von Neumann algebras generated by p-adic and Adelic measure spaces. Also, the primes as operators in certain von Neumann algebras, have been studied in [3] and [5].

Independently in [6] and [4] we have studied primes as linear functionals acting on *arithmetic functions*, i.e., each prime p induces a free-probabilistic structure (\mathcal{A}, g_p) on the algebra \mathcal{A} of all arithmetic functions. In such a case, one can understand arithmetic functions as *Krein-space operators* (for fixed primes) via certain representations (see [8]).

These studies are motivated by number-theoretic results (e.g., [9, 10] and [14]) under free probability techniques (e.g., [11, 12] and [13]).

1.2. MOTIVATION

In modern number theory and its applications, *p*-adic analysis provides important tools not only for studying mathematical analysis, analytic number theory and non-Archimedian analysis (e.g., [1,3,7,9] and [10]), but also for studying geometry at small distances in mathematical quantum physics (e.g., [14]). So, it is interested in both various mathematical fields and related scientific fields.

In [2] we studied free probability on Hecke algebras (see Sections 3 and 4 below). From the free-probabilistic models on Hecke algebras, we established certain representations of Hecke algebras, and considered corresponding C^* -algebras of Hecke algebras obtained from the representations, i.e., we understand every Hecke-algebra element as a Hilbert-space operator. Especially in [2], spectral properties (self-adjointness, normality, isometry-property, unitarity, etc.) of such operators were characterized.

In this paper we are typically interested in *projections* and *partial isometries* induced by generating elements of $\mathcal{H}(G_p)$. By understanding them pure operator-theoretically we construct group C^* -algebras generated by certain "nice" partial isometries having their common initial-and-final projections. The operator-algebraic properties of such C^* -algebras will be studied as embedded C^* -subalgebras of the C^* -algebra induced by Hecke algebras.

Our study will provide bridges among number theory, operator algebra, operator theory and free probability.

1.3. OVERVIEW

In Section 2 we introduce definitions and fundamental properties for our work. In Sections 3 and 4 we briefly review our free probability models on Hecke algebras. Some free-moment and free-cumulant computations are provided for our main results. In Section 5 we establish Hilbert-space representations of Hecke algebras and construct corresponding C^* -algebras, as operator-algebraic structures containing full free-probabilistic information of Hecke algebras.

In Section 6 we study partial isometries and projections induced by generating elements of Hecke algebras under our representations in detail. Projections and partial isometries in our Hecke C^* -algebras have been considered in [2], but we here provide much more detailed properties and characterizations of them (Theorem 6.1 and Theorem 6.2) independently. Moreover, we fix finitely many partial isometries,

having identical initial-and-final projections, and then construct groups generated by such partial isometries, as multiplicative subgroups of Hecke C^* -algebras. We study isomorphism theorems of such groups (see Theorem 6.3). Naturally, corresponding group C^* -algebras will be constructed as embedded C^* -subalgebras of the Hecke C^* -algebras. We consider structure theorems of such group C^* -algebras in Theorem 6.4 and Corollary 6.5.

In Section 7 free probability on these group C^* -algebras will be studied. We study free-distributional data of operators in the algebras by computing free-moments (Theorem 7.1 and Corollary 7.2), and consider freeness conditions (Theorem 7.6) on the group C^* -algebras by observing free-cumulants (Theorem 7.4) of generating operators.

2. DEFINITIONS AND BACKGROUND

In this section we review concepts and backgrounds of our proceeding works.

2.1. THE HECKE ALGEBRA OVER $GL_2(\mathbb{Q}_p)$

Throughout this section let p be a fixed *prime*, and let \mathbb{Q}_p be the *p*-adic number field for p. This set \mathbb{Q}_p is by definition the completion of the *rational numbers* \mathbb{Q} with respect to the *p*-adic norm

$$|q|_p = \left| p^k \frac{a}{b} \right| = \left(\frac{1}{p} \right)'$$

for $q = p^k \frac{a}{b} \in \mathbb{Q}$ and $k \in \mathbb{Z}$.

Define now the (multiplicative) group $GL_2(\mathbb{Q}_p)$ of all invertible (2×2) -matrices over the *p*-adic number field \mathbb{Q}_p ,

$$GL_2(\mathbb{Q}_p) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Q}_p) \middle| \begin{array}{c} a, b, c, d \in \mathbb{Q}_p, \\ ad - bc \neq 0 \end{array} \right\},\$$

where $M_2(\mathbb{Q}_p)$ means the set of all (2×2) -matrices over \mathbb{Q}_p .

In the rest of this paper we denote $GL_2(\mathbb{Q}_p)$ simply by G_p , if there is no confusion. The group G_p is locally profinite coming from the topology on \mathbb{Q}_p , i.e., it has a neighborhood base of the identity u_p of G_p , consisting of the compact-open subgroups

$$K_k = u_p + (p^k)GL_2(\mathbb{Z}_p)$$
 for all $k \in \mathbb{N}$,

where $GL_2(\mathbb{Z}_p)$ means the subset of $GL_2(\mathbb{Q}_p)$ whose elements have their entries in \mathbb{Z}_p , and where

$$u_p = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 is the identity matrix of $M_2(\mathbb{Q}_p)$.

Then the subgroup

$$K_0 = GL_2(\mathbb{Z}_p)$$

forms the maximal compact-open subgroup of G_p .

Now let (V, π) be a *representation* of G_p , that is V is a vector space, and π is a group action,

 $\pi: G_p \to GL(V)$

acting on V, where GL(V) is the set of all invertible linear transformations on V.

Definition 2.1. We say a representation (V, π) is a *smooth representation*, if given any vector $v \in V$, there is a compact-open subgroup K of G_p , such that

$$\pi(y)v = v$$
 for all $y \in K$.

Denote by V^K the set of vectors in V that are fixed by K under the action of π . Then the definition of smoothness implies that

$$V = \bigcup_{K \subseteq G_p: \text{ compact-open}} V^K.$$

Given two smooth representations (V_1, π_1) and (V_2, π_2) of G_p , we denote by

$$Hom_{G_n}(\pi_1, \pi_2),$$

the set of $\mathbb C\text{-linear}$ maps

$$f: V_1 \to V_2$$

such that

$$f \circ \pi_1(g) = \pi_2(g) \circ f$$

for all $g \in G_p$.

Definition 2.2. Define the Hecke algebra $\mathcal{H}(G_p)$ of G_p by

 $\mathcal{H}(G_p) = \{ f : G_p \to \mathbb{C} \mid f \text{ has compact-open support, and it is } \rho\text{-smooth} \}.$ (2.1)

The ρ -smoothness means that $\mathcal{H}(G_p)$ is a smooth representation of G_p under right translation. In other words, for any element $f \in \mathcal{H}(G_p)$, there is a compact-open subgroup K of G_p such that

$$\rho(y)f(g) = f(gy) = f(g) \tag{2.2}$$

for all $g \in G_p$. We sometimes say also that f is *locally constant*.

We make $\mathcal{H}(G_p)$ into an associative algebra by taking $f_1, f_2 \in \mathcal{H}(G_p)$ and defining *convolution* (as a vector multiplication)

$$(f_1 * f_2)(g) = \int_{G_p} f_1(x) f_2(x^{-1}g) d\mu_p(x), \qquad (2.3)$$

where μ_p denotes a left Haar measure on the locally compact-open group G_p .

2.2. FREE PROBABILITY

Throughout this paper we use *Speicher*'s *combinatorial free probability* techniques in the sense of [12] (also, see cited papers therein). The original analytic *free probability* theory is established by Voiculescu, and since the mid 1980's, it has developed as one of the main branches of *operator algebra theory*. By replacing independence of classical probability theory to (noncommutative) *freeness*, we can have the noncommutative (and hence, possibly commutative) operator-algebraic and operator-theoretic probability and corresponding statistics (for instance, free stochastic calculus, etc). Such a noncommutative(-or-commutative)-algebraic extended probability theory, called free probability, has various applications not only in mathematics (operator theory, in particular, spectral theory, and operator algebra, see e.g. [11]), but also in related scientific fields (e.g., free entropy theory, quantum probability, and quantum statistics, etc).

In combinatorial free probability the free-probabilistic information of given operators in an algebra is determined by *free moments* or *free cumulants* (see e.g., [12]). In fact free moments and free cumulants are equivalent under the Möbius inversion; but free moments are used for studying free-distributional data of operators, while free cumulants are used for studying freeness among operators in the algebra.

We refer readers to [12] and [13] for more about free probability theory. Especially, we will use the same concepts and results of [12] in this paper (without introducing them precisely).

2.3. GROUP ALGEBRAS

Let G be a countable discrete group. Then one can construct the algebra \mathcal{A}_G by

$$\mathcal{A}_G = \mathbb{C}[G] = \left\{ \sum_{g \in G} t_g g : t_g \in \mathbb{C} \text{ for all } g \in G \right\},\$$

where \sum means a finite sum, i.e., \mathcal{A}_G is the algebra generated by G. We call \mathcal{A}_G , the group algebra generated by G.

Each group algebra \mathcal{A}_G is understood as a *-algebra over \mathbb{C} , by defining the adjoint (*) on it by

$$\left(\sum_{g\in G} t_g g\right)^* \stackrel{def}{=} \sum_{g\in G} \overline{t_g} g^{-1},$$

where g^{-1} in the right-hand side mean group-inverse of g. All groups G of this paper are assumed to be countable discrete groups.

Every group algebra \mathcal{A}_G acts on the Hilbert space $H_G = l^2(G)$ via a group-action u, under the left regular unitary representation denoted by (H_G, u) , where $l^2(G)$ means the l^2 -space with its orthonormal basis (or its Hilbert basis)

$$\{\xi_g : g \in G \setminus \{e_G\}\},\$$

where e_G is the group-identity of G, satisfying

$$\langle \xi_{g_1}, \xi_{g_2} \rangle_2 = \delta_{g_1, g_2},$$

where $\langle \cdot, \cdot \rangle_2$ means the inner product on H_G and δ means the Kronecker delta.

In particular, the group-action u acts as follows: for each $g \in G$, the image u(g), denoted by u_g , becomes a *unitary operator* in the sense that: $u_g^* = u_g^{-1}$, where u_g^* means the (*Hilbert-space-operator-*) adjoint of u_g , and u_g^{-1} means the (*operator-*) inverse of u_g on H_G . In particular, the unitary operators $\{u_g\}_{g \in G}$ satisfy

$$u_{g_1}(\xi_{g_2}) \stackrel{def}{=} \xi_{g_1}\xi_{g_2} = \xi_{g_1g_2}$$

for all $g_1, g_2 \in G$, and $\xi_{g_2} \in H_G$, and

$$u_{q_1}u_{q_2} = u_{q_1q_2}$$
 for all $g_1, g_2 \in G$,

and

$$u_g^* = u_g^{-1} = u_{g^{-1}} \quad \text{for all} \quad g \in G,$$

where u_q^{-1} mean the operator-inverses of u_q for all $g \in G$.

By construction it is easy to check that a group algebra \mathcal{A}_G is a (*-)subalgebra of the operator algebra $B(H_G)$, consisting of (bounded linear) operators on H_G (pure algebraically, without considering topology).

So under operator-norm topology of $B(H_G)$, we can have the group C^* -algebra $\overline{\mathcal{A}_G}$; also, under weak-operator topology, one can have the group von Neumann algebra (or the group W^* -algebra) $\overline{\mathcal{A}_G}^w$, etc.

Let \mathcal{A}_G be the group algebra. Define a linear functional

$$tr_G:\mathcal{A}_G\to\mathbb{C}$$

by

$$tr_G\left(\sum_{g\in G} t_g g\right) \stackrel{def}{=} t_{e_G}.$$

Then it is a well-defined linear functional. Moreover, it satisfies

 $tr_G(x_1x_2) = tr_G(x_2x_1) \quad \text{for all} \quad x_1, x_2 \in \mathcal{A}_G,$

even though $x_1x_2 \neq x_2x_1$ in \mathcal{A}_G , i.e., tr_G is a trace on \mathcal{A}_G . We usually call tr_G the canonical trace on \mathcal{A}_G (e.g., [11]).

Thus, the pair (\mathcal{A}_G, tr_G) forms a free probability space in the sense of Section 2.2. This free probability space (\mathcal{A}_G, tr_G) is called the *(canonical) group(-algebra)free* probability space (under topologies, the group C^{*}-free probability space, or the group W^{*}-probability space, etc).

3. NORMAL HECKE PROBABILITY SPACES

In this section we review free-probabilistic structures obtained in [7], and main results of [7] will be introduced for our future work.

3.1. NORMAL HECKE SUBALGEBRAS \mathcal{H}_{Y_p} OF $\mathcal{H}(G_p)$

Notice, first that, by the very definition (2.1), the Hecke algebra $\mathcal{H}(G_p)$ can be re-defined by

$$\mathcal{H}(G_p) = \mathbb{C}_* \Big[\Big\{ f = \sum_{j=1}^N t_j \ \chi_{x_j K} \Big| N \in \mathbb{N}, \text{ and } t_j \in \mathbb{C}, K \text{ is a compact-open} \\ \text{subgroup of } G_p, \text{ depending on } f \\ \text{for all } x_j \in G_p, \ j = 1, \dots, N \Big\} \Big],$$

$$(3.1)$$

where $\mathbb{C}_*[X]$ mean algebras generated by X under the usual functional addition and convolution in the sense of Section 2.1, and χ_Y mean characteristic functions of μ_p -measurable subsets Y of G_p , where μ_p is in the sense of (2.2). The set

$$X_{p} = \left\{ f = \sum_{j=1}^{N} t_{j} \ \chi_{x_{j}K} \middle| N \in \mathbb{N}, \text{ and } t_{j} \in \mathbb{C}, K \text{ is a compact-open} \right.$$

$$subgroup \text{ of } G_{p}, \text{ depending on } f$$

$$for \text{ all } x_{j} \in G_{p}, j = 1, \dots, N \right\}$$

$$(3.2)$$

generating the Hecke algebra $\mathcal{H}(G_p)$, is said to be the generating set of $\mathcal{H}(G_p)$, and we call elements of X_p of (3.2) generating elements of $\mathcal{H}(G_p)$, i.e.,

$$\mathcal{H}(G_p) = \mathbb{C}_*[X_p]. \tag{3.3}$$

By (3.1) and (3.3), one may write

$$\mathcal{H}(G_p) = \Big\{ \sum_{j=1}^N t_j \ \chi_{x_j K_j} \Big| N \in \mathbb{N}, \text{ and } t_j \in \mathbb{C}, \text{ and} \\ K_j \text{ are compact-open subgroups of } G_p, \\ \text{for all } x_j \in G_p, \ j = 1, \dots, N \Big\},$$

$$(3.4)$$

set-theoretically.

By construction $\mathcal{H}(G_p)$ is a well-defined vector space over \mathbb{C} . As in Section 2.1, the convolution (*) on $\mathcal{H}(G_p)$, as a vector multiplication, is defined by

$$(f_1 * f_2)(g) = \int_{G_p} f_1(x) f_2(x^{-1}g) d\mu_p(g)$$

for all $f_1, f_2 \in \mathcal{H}(G_p)$, for all $g \in G_p$.

Proposition 3.1 ([7]). Let $\chi_{x_1K_1}, \chi_{x_2K_2}$ be generating elements of $\mathcal{H}(G_p)$, for $x_j \in G_p$, and compact-open subgroups K_j of G_p for j = 1, 2. Then

$$\left(\chi_{x_1K_1} * \chi_{x_2K_2}\right)(g) = \mu_p\left(x_1K_1 \cap gK_2x_2^{-1}\right) \tag{3.5}$$

for all $g \in G_p$.

Thus by (3.5), we obtain the following general result; if $f_j = \sum_{k=1}^{n_j} t_{j,k} \chi_{x_{j,k}K_j}$ are generating elements of $\mathcal{H}(G_p)$ in X_p , for j = 1, 2, then

$$(f_1 * f_2)(g) = \sum_{k=1}^{n_1} \sum_{l=1}^{n_2} (t_{1,k} t_{2,l}) \mu_p \left(x_{1,k} K_1 \cap g K_2 x_{2,l}^{-1} \right)$$

for all $g \in G_p$.

Without loss of generality, for any $x \in G_p$, one can understand

$$\chi_{xK}(g) = \frac{\mu_p(xK \cap gK)}{\mu_p(xK)} = \frac{\mu_p(xK \cap gK)}{\mu_p(K)}$$
(3.6)

by (2.2).

We now consider specific generating elements χ_{xK} in X_p , where K are "normal" compact-open subgroups of G_p . Recall that a subgroup K is *normal* in an arbitrary group Γ , if gK = Kg for all $g \in \Gamma$. As usual, we denote this normal subgroup-inclusion by $K \triangleleft \Gamma$.

Define a subset Y_p of the generating set X_p of $\mathcal{H}(G_p)$ by

$$Y_p \stackrel{def}{=} \left\{ \sum_{j=1}^N t_j \chi_{x_j K} \in X_p \, | K \lhd G_p \right\}.$$
(3.7)

Then we have a subalgebra

$$\mathcal{H}_{Y_p} \stackrel{def}{=} \mathbb{C}_*[Y_p] \text{ of } \mathcal{H}(G_p).$$
(3.8)

Proposition 3.2 ([7]). Let $\chi_{x_jK_j} \in \mathcal{H}_{Y_p}$, where $x_j \in G_p$, and $K_j \triangleleft G_p$ compact-open, for j = 1, 2. Then

$$\chi_{x_1K_1} * \chi_{x_2K_2} = \mu_p(K_1 \cap K_2)\chi_{x_1x_2K_1K_2},\tag{3.9}$$

where K_1K_2 is the product group of K_1 and K_2 in G_p .

Definition 3.3. Let Y_p be the subset (3.7) of the generating set X_p , and let $\mathcal{H}_{Y_p} = \mathbb{C}_*[Y_p]$ be the subalgebra (3.8) of the Hecke algebra $\mathcal{H}(G_p)$. Then we call Y_p and \mathcal{H}_{Y_p} , the normal sub-generating set of X_p , and the normal Hecke subalgebra of $\mathcal{H}(G_p)$, respectively.

For convenience, denote $\prod_{j=1}^{N} x_j$ and $\underset{j=1}{\overset{N}{\times}} K_j$ simply by $x_{1,\ldots,N}$ and $K_{1,\ldots,N}$, respectively, for all $N \in \mathbb{N}$, where $x_1, \ldots, x_N \in G_p$ and K_1, \ldots, K_N are (normal) compact-open subgroups of G_p . Also, denote

$$K_{1,...,(N-1)} \cap K_N$$
 by $K_{1,...,N}^o$

for all $N \in \mathbb{N} \setminus \{1\}$.

We obtain the following general computations.

Proposition 3.4. Let $\chi_{x_jK_j}$ be generating elements of the normal Hecke subalgebra \mathcal{H}_{Y_n} for $j \in \mathbb{N}$. Then

$$\sum_{j=1}^{N} \chi_{x_j K_j} = \left(\mu_p(K_{1,2}^o) \mu_p(K_{1,2,3}^o) \dots \mu_p(K_{1,\dots,N}^o) \right) \chi_{x_{1,\dots,N} K_{1,\dots,N}}$$
(3.10)

for all $N \in \mathbb{N}$.

Proof. The proof of (3.12) is done by (3.9), inductively (e.g., [2] and [7]).

From now on, let us denote the convolution $f * \ldots * f$ of *n*-copies of *f* simply by $f^{(n)}$ for all $n \in \mathbb{N}$ and $f \in \mathcal{H}(G_p)$.

3.2. FREE-PROBABILISTIC MODELS ON \mathcal{H}_{Y_p}

Let $\mathcal{H}(G_p)$ be the Hecke algebra generated by the generalized linear group $G_p = GL_2(\mathbb{Q}_p)$ over the *p*-adic number field \mathbb{Q}_p , for a fixed prime *p*. From Section 3.1, we start to understand this algebra $\mathcal{H}(G_p)$ as an algebra $\mathbb{C}_*[X_p]$ generated by X_p of (3.1), consisting of \mathbb{C} -valued functions *f* formed by

$$f = \sum_{j=1}^{N} t_j \chi_{x_j K} \quad \text{for} \quad t_j \in \mathbb{C}, x_j \in G_p,$$
(3.11)

where K is a compact-open subgroup of G_p , for $N \in \mathbb{N}$. So, to consider free-distributional data, we concentrate on generating elements χ_{xK} 's and e_{xK} 's, for $x \in G_p$, and compact-open subgroups K. Moreover, in this section, we restrict further our interests to the normal Hecke subalgebra \mathcal{H}_{Y_p} of $\mathcal{H}(G_p)$, for a fixed prime p.

Let u_p be the group-identity of G_p , i.e.,

$$u_p = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} \in G_p = GL_2(\mathbb{Q}_p).$$

For the fixed u_p define now a linear functional φ_p on \mathcal{H}_{Y_p} by

$$\varphi_p(f) \stackrel{def}{=} f(u_p) \quad \text{for all} \quad f \in \mathcal{H}_{Y_p}.$$
 (3.12)

The construction of the linear functional φ_p on \mathcal{H}_{Y_p} (originally introduced in [7]) is motivated by the canonical traces on group von Neumann algebras (e.g., [11]), and the point-evaluation linear functionals on arithmetic functions in the sense of [4–6] and [8]. Clearly, the morphism φ_p is a well-defined linear functional on \mathcal{H}_{Y_p} , and hence, the pair $(\mathcal{H}_{Y_p}, \varphi_p)$ forms a free probability space in the sense of Section 2.2.

Definition 3.5. We call the linear functional φ_p of (3.12) on the normal Hecke subalgebra \mathcal{H}_{Y_p} , the canonical linear functional. And the corresponding free probability space $(\mathcal{H}_{Y_p}, \varphi_p)$ is said to be the normal Hecke probability space.

Then we obtain the following fundamental free-moment computations.

Proposition 3.6 ([7]). Let χ_{xK} , $\chi_{x_jK_j}$, e_{xK} , $e_{x_jK_j}$ be generating free random variables in the normal Hecke probability space $(\mathcal{H}_{Y_p}, \varphi_p)$ for all $j \in \mathbb{N}$. Then

$$\varphi_p \begin{pmatrix} N \\ * \\ j=1 \end{pmatrix} = \frac{\mu_p(K_{1,2}^o) \dots \mu_p(K_{1,\dots,N}^o) \mu_p(x_{1,\dots,N} K_{1,\dots,N} \cap K_{1,\dots,N})}{\mu_p(K_{1,\dots,N})}$$
(3.13)

for all $N \in \mathbb{N}$.

Indeed,

$$\varphi_p\left(\underset{j=1}{\overset{N}{\ast}}\chi_{x_jK_j}\right) = \varphi_p\left(\mu_p(K_{1,2}^o)\mu_p(K_{1,2,3}^o)\dots\mu_p(K_{1,\dots,N}^o)\chi_{x_1,\dots,NK_{1,\dots,N}}\right)$$

by (3.10)

$$= \mu_p(K_{1,2}^o)\mu_p(K_{1,2,3}^o)\dots\mu_p(K_{1,\dots,N}^o)\varphi_p\left(\chi_{x_1,\dots,N}K_{1,\dots,N}\right) = \mu_p(K_{1,2}^o)\mu_p(K_{1,2,3}^o)\dots\mu_p(K_{1,\dots,N}^o)\chi_{x_1,\dots,N}K_{1,\dots,N}(u_p)$$

by (3.12)

$$= \mu_p(K_{1,2}^o)\mu_p(K_{1,2,3}^o)\dots\mu_p(K_{1,\dots,N}^o)\frac{\mu_p(x_{1,\dots,N}K_{1,\dots,N}\cap K_{1,\dots,N})}{\mu_p(K_{1,\dots,N})}$$

by (3.6)

$$=\frac{\mu_p(K_{1,2}^o)\mu_p(K_{1,2,3}^o)\dots\mu_p(K_{1,\dots,N}^o)\mu_p(x_{1,\dots,N}K_{1,\dots,N}\cap K_{1,\dots,N})}{\mu_p(K_{1,\dots,N})}$$

for all $N \in \mathbb{N}$.

Let $\chi_{x_1K_1}, \ldots, \chi_{x_NK_N} \in (\mathcal{H}_{Y_p}, \varphi_p)$ for $N \in \mathbb{N}$. Then $k_N^p(\chi_{x_1K_1}, \ldots, \chi_{x_NK_N})$

$$= \sum_{\pi \in NC(N)} \left(\prod_{V \in \pi} \varphi_p \left(\underset{j \in V}{*} \chi_{x_{i_j} K_{i_j}} \right) \mu \left(0_{|V|}, \ 1_{|V|} \right) \right)$$

by the Möbius inversion of Section 2.2

$$= \sum_{\pi \in NC(N)} \left(\prod_{V=(i_1,...,i_{|V|}) \in \pi} (\mu_p(V)) \, \mu\left(0_{|V|}, \, 1_{|V|}\right) \right),$$
(3.14)

by (3.13), where

$$\mu_p(V) = \frac{\mu_p(K_{i_1,i_2}^o) \dots \mu_p(K_{i_1,\dots,i_{|V|}}^o) \mu_p(x_{i_1,\dots,i_{|V|}} K_{i_1,\dots,i_{|V|}} \cap K_{i_1,\dots,i_{|V|}})}{\mu_p(K_{i_1,\dots,i_{|V|}})},$$

are the block-depending free moments for all $V \in \pi$ and $\pi \in NC(N)$, where $k_n^p(\ldots)$ means free cumulant determined by φ_p as in Section 2.2.

By (3.14) one can get the following freeness condition (3.15) on the normal Hecke subalgebra \mathcal{H}_{Y_p} . And this freeness condition shows that classical independence guarantees our freeness.

Proposition 3.7 ([7]). Let $f_j = \chi_{K_j}$ be free random variables in the normal Hecke free probability space $(\mathcal{H}_{Y_p}, \varphi_p)$ for j = 1, 2. Then

$$f_1 \text{ and } f_2 \text{ are free in } (\mathcal{H}_{Y_p}, \varphi_p) \Leftrightarrow \mu_p(K_{1,2}^o) = \mu_p(K_1)\mu_p(K_2).$$
 (3.15)

4. FREE PROBABILITY ON $\mathcal{H}(G_p)$

In this section we extend the free probability on the normal Hecke subalgebra \mathcal{H}_{Y_p} of Section 3.2 to free probability fully on the Hecke algebra $\mathcal{H}(G_p)$. For more information about such extensions, see [2].

Let G be an arbitrary group and let K be a subgroup of G. The normal core $\operatorname{Core}_G(K)$ of K in G is defined by the subgroup of G,

$$\operatorname{Core}_{G}(K) \stackrel{def}{=} \underset{g \in G}{\cap} \left(g^{-1} K g \right).$$

$$(4.1)$$

Then the normal core $\text{Core}_G(K)$ is the maximal normal subgroup of G contained in K, i.e.,

$$\operatorname{Core}_G(K) \triangleleft G \text{ and } \operatorname{Core}_G(K) \leqslant K.$$
 (4.2)

For convenience, we denote the normal core $\text{Core}_G(K)$ of (4.1) satisfying (4.2) simply by K_G .

Define now a linear transformation E_p on the Hecke algebra $\mathcal{H}(G_p)$ by a morphism satisfying (4.3) and (4.4) below:

$$E_p\left(\chi_{xK}\right) = \begin{cases} \chi_{xK_{G_p}} & \text{if } xK = Kx, \\ 0_{\mathcal{H}(G_p)} & \text{otherwise} \end{cases}$$
(4.3)

and

$$E_p\left(\chi_{x_1K_1} * \chi_{x_2K_2}\right) = \begin{cases} \mu_p(K_{1,2}^o)\chi_{x_{1,2}K_{1,2:G_p}} & \text{if } x_iK_j = K_jx_j \text{ for all } i, \ j \in \{1,2\}, \\ 0_{\mathcal{H}(G_p)} & \text{otherwise,} \end{cases}$$
(4.4)

where K_{G_p} and $K_{1,2:G_p}$ mean the normal cores of K and $K_{1,2}$ in G_p , respectively, and where $0_{\mathcal{H}(G_p)}$ is the zero element of $\mathcal{H}(G_p)$.

By (4.3) and (4.4), if K_j are compact-open subgroups of G_p , and $x_i \in G_p$, and if

$$x_i K_j = K_j x_i \quad \text{for all} \quad i, j = 1, \dots, N, \tag{4.5}$$

for $N \in \mathbb{N}$, then

$$E_p \left(\chi_{x_1 K_1} * \dots * \chi_{x_N K_N} \right)$$

= $E_p \left(\mu_p(K_{1,2}^o) \mu_p(K_{1,2,3}^o) \dots \mu_p(K_{1,\dots,N}^o) \chi_{x_{1,\dots,N} K_{1,\dots,N}} \right)$ (4.6)

$$= \mu_p(K_{1,2}^o)\mu_p(K_{1,2,3}^o)\dots\mu_p(K_{1,\dots,N}^o)\chi_{x_{1,\dots,N}K_{1,\dots,N:G_p}}$$
(4.7)

inductively by (4.4). Remark that if the condition (4.5) holds, then the formula

$$\underset{j=1}{\overset{N}{\ast}} \chi_{x_j K_j} = \mu_p(K_{1,2}^o) \mu_p(K_{1,2,3}^o) \dots \mu_p(K_{1,\dots,N}^o) \chi_{x_{1,\dots,N} K_{1,\dots,N}}$$
(4.8)

holds in $\mathcal{H}(G_p)$, without normality of K_1, \ldots, K_N in G_p (see [2]), and hence, the formula (4.6) holds, and hence the equality (4.7) holds, by (4.3) and (4.6).

Proposition 4.1. Let $f_j = \chi_{x_j K_j}$ be generating elements of the Hecke algebra $\mathcal{H}(G_p)$, for j = 1, ..., N, for $N \in \mathbb{N}$, and let E_p be the linear transformation (4.4) on $\mathcal{H}(G_p)$. If

$$x_i K_j = K_j x_i$$
 for all $i, j = 1, \dots, N$,

then

$$E_p\left(\underset{j=1}{\overset{N}{\ast}}f_j\right) = \left(\prod_{j=2}^{N}\mu_p(K_{1,\dots,j}^o)\right)\chi_{x_{1,\dots,N}K_{1,\dots,N:G_p}}.$$
(4.9)

Otherwise, they are identical to the zero element $0_{\mathcal{H}(G_p)}$ of the Hecke algebra $\mathcal{H}(G_p)$.

Proof. The proof of (4.9) is done by (4.5) and (4.8). See [2] for more details.

By construction it is not difficult to check that the linear transformation E_p maps $\mathcal{H}(G_p)$ onto the normal Hecke subalgebra \mathcal{H}_{Y_p} . Moreover, this morphism E_p is idempotent in the sense that

$$E_p^2(f) = E_p(E_p(f)) = E_p(f)$$

for all $f \in \mathcal{H}(G_p)$, because normal cores are normal subgroups of G_p .

Definition 4.2. We will call the morphism E_p of (4.2), the normal-coring on $\mathcal{H}(G_p)$.

Define now a linear functional ψ_p on the Hecke algebra $\mathcal{H}(G_p)$ by

$$\psi_p \stackrel{def}{=} \varphi_p \circ E_p \text{ on } \mathcal{H}(G_p). \tag{4.10}$$

By the linearity of both the canonical linear functional φ_p on \mathcal{H}_{Y_p} and the normal-coring E_p on $\mathcal{H}(G_p)$, the morphism ψ_p is a linear functional on $\mathcal{H}(G_p)$. We call the linear functional ψ_p of (4.10), the normal-cored (canonical) linear functional on $\mathcal{H}(G_p)$. So, the pair $(\mathcal{H}(G_p), \psi_p)$ forms a free probability space.

Definition 4.3. The free probability space $(\mathcal{H}(G_p), \psi_p)$ of the Hecke algebra $\mathcal{H}(G_p)$ and the normal-cored linear functional ψ_p of (4.10) is said to be the normal-cored Hecke probability space.

Generally we obtain the following joint free-moment computations.

Theorem 4.4. Let $(\mathcal{H}(G_p), \psi_p)$ be the normal-cored Hecke probability space, and let $f_j = \chi_{x_j K_j}$ be generating free random variables in $(\mathcal{H}(G_p), \psi_p)$ for $j \in \mathbb{N}$. If the condition (4.5) holds for $N \in \mathbb{N}$, then we obtain

$$\psi_{p}\left(\sum_{j=1}^{N}f_{j}\right) = \frac{\left(\mu_{p}(K_{1,2}^{o})\mu_{p}(K_{1,2,3}^{o})\dots\mu_{p}(K_{1,\dots,N}^{o})\right)\mu_{p}\left(x_{1,\dots,N}K_{1,\dots,N:G}\cap K_{1,\dots,N:G_{p}}\right)}{\mu_{p}\left(K_{1,\dots,N:G_{p}}\right)}$$
(4.11)

for all $N \in \mathbb{N}$, where $K_{1,\ldots,N:G_p}$ is in the sense of (4.2). If there exists at least one pair $(i, j) \in \{1, \ldots, N\}^2$, for $N \in \mathbb{N}$, such that $x_i K_j \neq K_j x_i$ in G_p , then the formulas (4.11) vanish in $\mathcal{H}(G_p)$.

Proof. Suppose first that

$$x_i K_j = K_j x_i$$
 for all $i, j = 1, \dots, N_j$

for $N \in \mathbb{N}$, i.e., assume that the condition (4.5) holds. Then we have

$$\begin{split} \psi_p \left(\bigotimes_{j=1}^{N} f_j \right) &= \psi_p \left(\mu_p(K_{1,2}^o) \mu_p(K_{1,2,3}^o) \dots \mu_p(K_{1,\dots,N}^o) \chi_{x_{1,\dots,N}K_{1,\dots,N}} \right) \\ \text{by (4.6)} \\ &= \mu_p(K_{1,2}^o) \mu_p(K_{1,2,3}^o) \dots \mu_p(K_{1,\dots,N}^o) \psi_p \left(\chi_{x_{1,\dots,N}K_{1,\dots,N}} \right) \\ &= \mu_p(K_{1,2}^o) \dots \mu_p(K_{1,\dots,N}^o) \varphi_p \left(E_p(\chi_{x_{1,\dots,N}K_{1,\dots,N}}) \right) \\ &= \mu_p(K_{1,2}^o) \dots \mu_p(K_{1,\dots,N}^o) \varphi_p \left(\chi_{x_{1,\dots,N}K_{1,\dots,N}:G_p} \right) \\ &= \mu_p(K_{1,2}^o) \dots \mu_p(K_{1,\dots,N}^o) \left(\frac{\mu_p(x_{1,\dots,N}K_{1,\dots,N}:G \cap K_{1,\dots,N}:G_p)}{\mu_p(K_{1,\dots,N}:G_p)} \right) \\ \text{by (3.9)} \\ &= \frac{\mu_p(K_{1,2}^o) \dots \mu_p(K_{1,\dots,N}^o) \mu_p(x_{1,\dots,N}K_{1,\dots,N}:G \cap K_{1,\dots,N}:G_p)}{\mu_p(K_{1,\dots,N}:G_p)}. \end{split}$$

So, the formula (4.11) holds.

Of course if there exists at least one pair (i, j), such that $x_i K_j \neq K_j x_i$, then the formulas (4.11) and (4.12) simply vanish, by (4.3) and (4.4).

So we obtain that

$$\psi_p \begin{pmatrix} N \\ * \\ j=1 \end{pmatrix} = \frac{\mu_p(K_{1,2}^o)\mu_p(K_{1,2,3}^o)\dots\mu_p(K_{1,\dots,N}^o)\mu_p(K_{1,\dots,N:G_p})}{\mu_p(K_{1,\dots,N:G_p})}$$

$$= \mu_p(K_{1,2,j}^o)\mu_p(K_{1,2,3,j}^o)\dots\mu_p(K_{1,\dots,N}^o),$$
(4.12)

by (4.11).

Now let K_1 and K_2 be compact-open subgroups of G_p , and let χ_{K_j} be corresponding free random variables in the normal-cored Hecke probability space $(\mathcal{H}(G_p), \psi_p)$. Suppose $k_N(\ldots)$ is the free cumulant for the normalized linear functional ψ_p . Then, for any $(i_1, \ldots, i_N) \in \{1, 2\}^N$, for all $N \in \mathbb{N}$, we obtain the following free cumulant computation:

$$k_N\left(\chi_{K_{i_1}}, \dots, \chi_{K_{i_N}}\right) = \sum_{\pi \in NC(N)} \left(\prod_{V \in \pi} \mu_p(V) \ \mu\left(0_{|V|}, \ 1_{|V|}\right)\right)$$
(4.13)

with

$$\mu_p(V) = \mu_p(K^o_{i_{j_1}, i_{j_2}}) \mu_p\left(K^o_{i_{j_1}, i_{j_2}, i_{j_3}}\right) \dots \mu_p\left(K^o_{i_{j_1}, \dots, i_{j_k}}\right),$$

by (4.12), whenever $V = (j_1, \ldots, j_k) \in \pi$ for all $\pi \in NC(N)$ and for all $N \in \mathbb{N}$, where $\mu_p(V)$ are the V-block-depending free moments.

By the above joint free-cumulant formula (4.13), we obtain the following freeness condition on the normalized Hecke probability space $(\mathcal{H}(G_p), \psi_p)$.

Theorem 4.5 ([2]). Let $f_j = \chi_{K_j}$ and $h_j = e_{K_j}$ be free random variables in the normal-cored Hecke probability space $(\mathcal{H}(G_p), \psi_p)$ for j = 1, 2. Then

$$f_1 \text{ and } f_2 \text{ are free in } (\mathcal{H}(G_p), \psi_p) \Leftrightarrow \mu_p(K_{1,2}^o) = \mu_p(K_1)\mu_p(K_2).$$
 (4.14)

5. REPRESENTATIONS ON NORMAL-CORED HECKE PROBABILITY SPACES

In this section we introduce representations of the normal-cored Hecke probability spaces $(\mathcal{H}(G_p), \psi_p)$, for primes p. Let p be a fixed prime, and let $(\mathcal{H}(G_p), \psi_p)$ be the corresponding normal-cored Hecke probability space.

Define a sesqui-linear form on the Hecke algebra $\mathcal{H}(G_p)$,

$$[\cdot, \cdot]_p : \mathcal{H}(G_p) \times \mathcal{H}(G_p) \to \mathbb{C}$$

by

$$[f_1, f_2]_p \stackrel{def}{=} \psi_p(f_1 * f_2^*) \quad \text{for all} \quad f_1, f_2 \in \mathcal{H}(G_p), \tag{5.1}$$

where

$$f^*(x) \stackrel{def}{=} \overline{f(x)}$$
 in \mathbb{C} for all $x \in G_p$,

where \overline{z} means the conjugate of z for all $z \in \mathbb{C}$. We call the above unary operation

$$f \in \mathcal{H}(G_p) \longmapsto f^* \in \mathcal{H}(G_p), \tag{5.2}$$

the *adjoint*. And the element f^* of (5.2) is said to be the *adjoint of* f. Since the adjoint (5.2) is well-defined on $\mathcal{H}(G_p)$, one may understand our Hecke algebra $\mathcal{H}(G_p)$ as a *-algebra over \mathbb{C} .

The form $[\cdot, \cdot]_p$ of (5.1) is indeed sesqui-linear, since

$$[t_1f_1 + t_2f_2, f_3]_p = t_1[f_1, f_3] + t_2[f_2, f_3]$$

and

$$[f_1, t_2f_2 + t_3f_3]_p = \overline{t_2}[f_1, f_2]_p + \overline{t_3}[f_1, f_3]_p$$

for all $f_1, f_2, f_3 \in \mathcal{H}(G_p)$ and $t_1, t_2, t_3 \in \mathbb{C}$.

Consider now that, for any fixed generating element χ_{xK} of $\mathcal{H}(G_p)$, for $x \in G_p$, and a compact-open subgroup K of G_p , we have

$$[t\chi_{xK}, t\chi_{xK}]_p = \psi_p \left(t\chi_{xK} * \bar{t}\chi_{xK} \right) = |t|^2 \psi_p \left(\chi_{xK} * \chi_{xK} \right)$$

by the sesqui-linearity of $[\cdot, \cdot]_p$, where |t| means the modulus $\sqrt{t t}$ of t,

$$=\begin{cases} |t|^2 \psi_p(\mu_p(K) \chi_{x^2K}) & \text{if } xK = Kx\\ 0 & \text{otherwise} \end{cases}$$
$$=\begin{cases} \left(\mu_p(K) |t|^2\right) \left(\frac{\mu_p(x^2K_{G_p} \cap K_{G_p})}{\mu_p(K_{G_p})}\right) & \text{if } xK = Kx\\ 0 & \text{otherwise} \end{cases}$$
$$=\begin{cases} |t|^2 \left(\frac{\mu_p(K) \mu_p(x^2K_{G_p} \cap K_{G_p})}{\mu_p(K_{G_p})}\right) & \text{if } xK = Kx\\ 0 & \text{otherwise} \end{cases}$$

by (4.11), i.e.,

$$[t\chi_{xK}, t\chi_{xK}]_p = |t|^2 \left(\frac{\mu_p(K)\mu_p(x^2K_{G_p} \cap K_{G_p})}{\mu_p(K_{G_p})}\right), \text{ or } 0,$$
(5.3)

where K_{G_p} is the normal core of K in G_p . So, by (5.3), we obtain that

$$[t\chi_{xK}, t\chi_{xK}]_p \ge 0 \tag{5.4}$$

for all $x \in G_p$, for all compact-open subgroups K of G_p , for all $t \in \mathbb{C}$.

By (5.4) one can get in general that

$$[f, f]_p \ge 0 \quad \text{for all} \quad f \in \mathcal{H}(G_p).$$
 (5.5)

Proposition 5.1 ([2]). The sesqui-linear form $[\cdot, \cdot]_p$ on the Hecke algebra $\mathcal{H}(G_p)$ forms a pseudo-inner product on $\mathcal{H}(G_p)$.

Suppose K is a nonempty proper "normal" compact-open subgroup of G_p and let xK be the left coset of K by $x \in G_p$. As "non-empty subsets" of G_p , it is possible that

$$xK \cap K = \emptyset$$
, and hence, $\mu_p(xK \cap K) = 0$.

In such a case we have

$$[\chi_{xK}, \chi_{xK}]_p = \psi_p \left(\mu_p(K)\chi_{xK}\right) = \varphi_p \left(\mu_p(K) \chi_{xK}\right)$$
$$= \frac{\mu_p(K)\mu_p(xK \cap K)}{\mu_p(K)} = \mu_p(xK \cap K) = 0$$

i.e., there exist nonzero elements f of $\mathcal{H}(G_p)$ such that

 $[f, f]_p = 0.$

Indeed, if $xK \neq Kx$ in G_p , then, by the very definition of E_p ,

$$E_p\left(\chi_{xK} * \chi_{xK}\right) = 0_{\mathcal{H}(G_p)},$$

and hence,

$$\psi_p(\chi_{xK} * \chi_{xK}^*) = \varphi_p\left(0_{\mathcal{H}(G_p)}\right) = 0,$$

even though $\chi_{xK} \neq 0_{\mathcal{H}(G_p)}$, i.e.,

$$\exists f \neq 0_{\mathcal{H}(G_p)} : [f, f]_p = 0.$$

$$(5.6)$$

So the pseudo-inner product space $(\mathcal{H}(G_p), [\cdot, \cdot]_p)$ is not an inner product space, by (5.6).

When we understand our Hecke algebra $\mathcal{H}(G_p)$ as a pseudo-inner product space, we denote it by \mathcal{H}_p .

On the pseudo-inner product space \mathcal{H}_p define a relation \mathcal{R}_p by

$$f_1 \mathcal{R}_p f_2 \stackrel{def}{\longleftrightarrow} [f_1, f_1]_p = [f_2, f_2]_p.$$
(5.7)

By the very definition (5.7) of \mathcal{R}_p , it is an equivalence relation on \mathcal{H}_p .

Definition 5.2. Let \mathcal{H}_p be the pseudo-inner product space (5.6), and let \mathcal{R}_p be the equivalence relation (5.7) on \mathcal{H}_p . Define the quotient space \mathfrak{H}_p by

$$\mathfrak{H}_p = \mathcal{H}_p / \mathcal{R}_p, \tag{5.8}$$

equipped with the inherited pseudo-inner product, also denoted by $[\cdot, \cdot]_p$ on it. Then

$$\mathfrak{H}_p = (\mathfrak{H}_p, [\cdot, \cdot]_p) = (\mathcal{H}_p/\mathcal{R}_p, [\cdot, \cdot]_p)$$

is called the (normal-cored) Hecke inner product space.

From now on, if there is no confusion we denote equivalence classes

$$[f]_{\mathcal{R}_p} = \{h \in \mathcal{H}_p : h\mathcal{R}_p f\}$$

simply by f in the Hecke inner product space $\mathfrak{H}_{p,\square}$

Indeed, our Hecke inner product space \mathfrak{H}_p is an inner product space, by \mathcal{R}_p of (5.7), i.e., it satisfies

$$[f, f]_p = 0 \iff f = 0_{\mathfrak{H}_p} = 0_{\mathcal{H}_p} / \mathcal{R}_p, \tag{5.9}$$

where $0_{\mathcal{H}_p}$ is the zero element of \mathcal{H}_p .

For the given inner product space \mathfrak{H}_p , one can define the corresponding norm $\|\cdot\|_p$ on \mathfrak{H}_p by

$$\|f\|_{p} \stackrel{def}{=} \sqrt{[f, f]_{p}} \quad \text{for all} \quad f \in \mathfrak{H}_{p}, \tag{5.10}$$

and the corresponding metric d_p on \mathfrak{H}_p by

$$d_p(f_1, f_2) = \|f_1 - f_2\|_p \quad \text{for all} \quad f_1, f_2 \in \mathfrak{H}_p.$$
(5.11)

Definition 5.3. Construct the d_p -metric topology closure of \mathfrak{H}_p , also denoted by \mathfrak{H}_p , where d_p is in the sense of (5.11) induced by the norm $\|\cdot\|_p$ of (5.10). It is called the (normal-cored) Hecke Hilbert space.

Then by the very construction of the Hecke Hilbert space \mathfrak{H}_p from the normal-cored Hecke probability space $(\mathcal{H}(G_p), \psi_p)$, the algebra $\mathcal{H}(G_p)$ acts on \mathfrak{H}_p via an algebra-action α^p ;

$$\alpha^{p}(f)(h) = f * h \quad \text{for all} \quad h \in \mathfrak{H}_{p}, \tag{5.12}$$

for all $f \in \mathcal{H}(G_p)$. More precisely, the above relation (5.12) means

$$\alpha^{p}(f)(h) = \alpha^{p}(f)\left([h]_{\mathcal{R}_{p}}\right) = [f * h]_{\mathcal{R}_{p}}$$

$$(5.13)$$

in \mathfrak{H}_p for $f \in \mathcal{H}(G_p)$. For convenience, we denote $\alpha^p(f)$ by α_f^p for all $f \in \mathcal{H}(G_p)$.

The above morphism α^p of (5.12) and (5.13) is indeed a well-defined algebra-action of $\mathcal{H}(G_p)$ acting on \mathfrak{H}_p , since

$$\alpha_{f_1*f_2}^p(h) = f_1 * f_2 * h = f_1 * (f_2 * h)$$
$$= f_1 * \left(\alpha_{f_2}^p(h)\right) = \alpha_{f_1}^p\left(\alpha_{f_2}^p(h)\right) = \left(\alpha_{f_1}^p\alpha_{f_2}^p\right)(h)$$

for all $h \in \mathfrak{H}_p$ and $f_1, f_2 \in \mathcal{H}(G_p)$, i.e.,

$$\alpha_{f_1*f_2}^p = \alpha_{f_1}^p \alpha_{f_2}^p \text{ on } \mathfrak{H}_p \tag{5.14}$$

for all $f_1, f_2 \in \mathcal{H}(G_p)$. Also, α^p satisfies that

$$\begin{split} \left[\alpha_f^p(h_1), \ h_2 \right]_p &= \left[f * h_1, \ h_2 \right]_p \\ &= \psi_p \left((f * h_1) * h_2^* \right) \\ &= \psi_p \left(h_1 * f * h_2^* \right) \\ &= \psi_p \left(h_1 * (h_2^* * f) \right) \psi_p \left(h_1 * (f^* * h_2)^* \right) \\ &= \left[h_1, f^* * h_2 \right]_p = \left[h_1, \ \alpha_{f^*}^p(h_2) \right]_p \end{split}$$

for all $h_1, h_2 \in \mathfrak{H}_p$ and $f \in \mathcal{H}(G_p)$, i.e.,

$$\left(\alpha_{f}^{p}\right)^{*} = \alpha_{f^{*}}^{p} \text{ on } \mathfrak{H}_{p} \text{ for all } f \in \mathcal{H}(G_{p}).$$
 (5.15)

Therefore, the morphism α^p of (5.12) is a *-algebra-action of $\mathcal{H}(G_p)$ acting on \mathfrak{H}_p , by (5.14) and (5.15).

Theorem 5.4. The pair $(\mathfrak{H}_p, \alpha^p)$ of the Hecke Hilbert space \mathfrak{H}_p and the morphism α^p of (5.12) forms a Hilbert-space representation of the Hecke algebra $\mathcal{H}(G_p)$ acting on \mathfrak{H}_p .

Proof. The proof is done by (5.13), (5.14) and (5.15). (See [2] for more details.)

We call the algebra-action α^p of (5.12) the (normal-cored) Hecke(-algebra) action of $\mathcal{H}(G_p)$ acting on \mathfrak{H}_p .

Definition 5.5. The Hilbert-space representation $(\mathfrak{H}_p, \alpha^p)$ of the Hecke algebra $\mathcal{H}(G_p)$ is called the (normal-cored) Hecke representation (of the normal-cored Hecke probability space $(\mathcal{H}(G_p), \psi_p)$).

6. CERTAIN PROJECTIONS AND PARTIAL ISOMETRIES ON \mathfrak{H}_p

In this section under the Hecke representation $(\mathfrak{H}_p, \alpha^p)$ of the Hecke probability space $(\mathcal{H}(G_p), \psi_p)$, certain generating elements of $\mathcal{H}(G_p)$ will be considered as Hilbert-space operators on \mathfrak{H}_p (under quotient). In particular, we are interested in partial isometries induced by generating elements and their initial and final projections.

Already in [2] we studied some operator-theoretic information; self-adjointness, normality, unitarity, isometry-property and hyponormality; of such operators. In particular, we realized that, by the very constructions of the Hecke algebra $\mathcal{H}(G_p)$ and our representation $(\mathfrak{H}_p, \alpha^p)$, there are no isometries (and hence, no unitaries) formed by $\alpha^p_{t\chi_{xK}}$, for $t \in \mathbb{C}, x \in G_p$, and compact-open subgroups K of G_p . However, operators $\alpha^p_{t\chi_{xK}}$ are always normal on \mathfrak{H}_p .

Since there are neither isometries nor unitaries we are interested in the operators $\alpha_{t\chi_{xK}}^p$ which are projections, and partial isometries having their identical initial-and-final projections on \mathfrak{H}_p .

Recall that an operator T on a Hilbert space H is said to be a *partial isometry*, if T^*T is a projection on H. It is well-known that: T is a partial isometry, if and only if $TT^*T = T$ on H, if and only if T^* is a partial isometry on H, if and only if $T^*TT^* = T^*$ on H, if and only if TT^* is a projection on H. i.e., a partial isometry T is a unitary from $T^*T(H)$ onto $TT^*(H)$.

If T is a partial isometry on H, then the projection T^*T is called the *initial* projection of T, and the projection TT^* is called the *final projection of* T on H. Also, the (closed) subspaces $T^*T(H)$ and $TT^*(H)$ of H are called the *initial subspace* and the *final subspace* of T in H, respectively.

If T is a partial isometry on H, then it is a unitary from its initial subspace onto its final subspace, in the sense that:

$$T^*T = 1_{T^*T(H)}$$
 and $TT^* = 1_{TT^*(H)}$,

where 1_K means the identity operators on Hilbert (sub-)spaces K (in H). Thus, if T has identical initial and final subspaces K in H, then

$$T^*T = 1_K = TT^*,$$

and hence, one can understand T as unitary in the operator subalgebra B(K) of B(H). Notice that in Section 5 (and [2]), we observed that:

$$\left(\alpha_{f_1}^p\right)\left(\alpha_{f_2}^p\right) = \alpha_{f_1*f_2}^p \quad \text{for all} \quad f_1, f_2 \in \mathcal{H}(G_p), \tag{6.1}$$

Free probability on Hecke algebras and certain group C^* -algebras...

$$\left(\alpha_{f}^{p}\right)^{*} = \alpha_{f^{*}}^{p} \quad \text{for all} \quad f \in \mathcal{H}(G_{p}).$$
 (6.2)

Theorem 6.1. Let $f = \chi_{xK}$ be a generating element of $\mathcal{H}(G_p)$ for $x \in G_p$, and a compact-open subgroup K of G_p . Assume xK = Kx in G_p , and let α_f^p be the corresponding operator on the Hecke Hilbert space \mathfrak{H}_p .

$$\alpha_f^p \text{ is a projection on } \mathfrak{H}_p \iff \mu_p(K) = 1, \text{ and } x \in K.$$
 (6.3)

Proof. Recall that an operator T on an arbitrary Hilbert space H is a projection, if (i) T is self-adjoint in the sense that $T^* = T$ on H, where T^* is the adjoint of T, and (ii) T is idempotent in the sense that $T^2 = T$ on H.

Observe now that

$$\left(\alpha_f^p\right)^* = \alpha_{f*}^p = \alpha_{(\chi_{xK})^*}^p = \alpha_{\chi_{xK}}^p = \alpha_f^p,$$

by (6.2). Thus, the operator α_f^p is self-adjoint on \mathfrak{H}_p . So, the given operator α_f^p satisfies the self-adjointness condition (i) automatically.

Now observe that

$$\left(\alpha_f^p\right)^2 = \alpha_{f*f}^p = \alpha_{\mu_p(K)\chi_{x^2K}}^p \text{ on } \mathfrak{H}_p, \tag{6.4}$$

by (6.1), and by the assumption: xK = Kx in G_p . So to satisfy the idempotence condition (ii), the operator α_f^p must satisfy

$$\alpha^p_{\mu_p(K)|\chi_{x^2K}} = \alpha^p_{\chi_{xK}} \text{ on } \mathfrak{H}_p, \tag{6.5}$$

by (6.4).

 (\Leftarrow) If $\mu_p(K) = 1$, and $x \in K$, then xK = K, and hence, $x^2K = K$, moreover,

$$\alpha^p_{\mu_p(K)\chi_{x^2K}} = \alpha^p_{\chi_K} = \alpha^p_{\chi_{xK}}$$

Therefore, the relation (6.5) holds, and hence α_f^p is a projection on \mathfrak{H}_p .

 (\Rightarrow) Suppose the relation (6.5) holds, and assume that either $\mu_p(K) \neq 1$, or $x \notin K$ in G_p .

Let $x \notin K$ in G_p . Then, in general, $xK \neq x^2K$, and hence, $\chi_{x^2K} \neq \chi_{xK}$. So, the relation (6.5) does not hold true, and it contradicts our assumption.

Assume now that $\mu_p(K) \neq 1$. Then, clearly,

$$\mu_p(K)\chi_{x^2K} \neq \chi_{xK},$$

in general, thus the relation (6.5) does not hold either. It again contradicts our assumption.

Therefore, we obtain the characterization

$$\alpha_f^p$$
 is an idempotent $\iff \mu_p(K) = 1$, and $x \in K$. (6.6)

By the self-adjointness of α_f^p , and by (6.5) and (6.6), one can conclude that: α_f^p is a projection on \mathfrak{H}_p , if and only if

$$\mu_p(K) = 1, \text{ and } x \in K.$$

The above characterization (6.3) shows that the generating elements $f = \chi_{xK}$ of the normal-cored Hecke probability space $(\mathcal{H}(G_p), \psi_p)$ assign projections α_f^p on the Hecke Hilbert space \mathfrak{H}_p , whenever

$$f = \chi_K \quad \text{with} \quad \mu_p(K) = 1. \tag{6.7}$$

Let $f_j = \chi_{K_j}$ be non-zero generating elements of $(\mathcal{H}(G_p), \psi_p)$, where $\mu_p(K_j) = 1$, equivalently, $\alpha_{f_j}^p$ are projections on \mathfrak{H}_p , by (6.3) and (6.7), for j = 1, 2. Also, let $f = \chi_{xK} \in (\mathcal{H}(G_p), \psi_p)$, and α_f^p , the corresponding operator on \mathfrak{H}_p , where

$$xK = Kx$$
 in G_p .

Consider the following functional equation:

$$f^* * f = f_1$$
 and $f * f^* = f_2$ on $\mathcal{H}(G_p)$. (6.8)

Observe that

$$f^* * f = \mu_p(K)\chi_{x^2K} = f * f^*$$
 in $\mathcal{H}(G_p)$. (6.9)

Consider the equality (6.10) below:

$$\mu_p(K)\chi_{x^2K} = \chi_K.$$
(6.10)

To satisfy (6.10), one must have that:

$$\mu_p(K) = 1, \text{ and } x^2 K = K.$$
 (6.11)

By (6.8), (6.9) and (6.10), we obtain the following theorem.

Theorem 6.2. Let $x_0 \in G_p$, and K_0, K , compact-open subgroups of G_p , where $x_0K_0 = K_0x_0$ in G_p . If

$$x_0 K_0 = x_0^{-1} K \text{ in } G_p, \text{ with } \mu_p(K_0) = 1 = \mu_p(K),$$
 (6.12)

then $\alpha_{\chi_{x_0K_0}}^p$ is a partial isometry with its initial and final projections $\alpha_{\chi_K}^p$ on \mathfrak{H}_p . *Proof.* By (6.3) and (6.7), if $\mu_p(K) = 1$, then $\alpha_{\chi_K}^p$ is a projection on \mathfrak{H}_p . Assume now that

$$x_0^2 K_0 = K \text{ in } G_p, \text{ where } \mu_p(K_0) = 1,$$

for some $x_0 \in G_p$. Then we have

$$\chi_{x_0K_0}^* * \chi_{x_0K_0} = \chi_{x_0K_0} * \chi_{x_0K_0} = \mu_p(K_0)\chi_{x_0^2K_0} = \chi_{x_0^2K_0} = \chi_K$$

on \mathfrak{H}_p , by (6.9), (6.10) and (6.11). Similarly, one obtains that

$$\chi_{x_0K_0} * \chi^*_{x_0K_0} = \chi_{x_0^2K_0} = \chi_K \text{ on } \mathfrak{H}_p.$$

Thus, the operator $\alpha^p_{\chi_{x_0K_0}}$ satisfies

$$\left(\alpha_{\chi_{x_0}K_0}^p\right)^* \left(\alpha_{\chi_{x_0}K_0}^p\right) = \alpha_{\chi_K}^p = \left(\alpha_{\chi_{x_0}K_0}^p\right) \left(\alpha_{\chi_{x_0}K_0}^p\right)^* \tag{6.13}$$

on \mathfrak{H}_p , by the assumption that $x_0K_0 = K_0x_0$ in G_p .

The relation (6.13) shows that the operator $\alpha_{\chi_{x_0K_0}}^p$ is a partial isometry with its initial and final projections identified with the projection $\alpha_{\chi_K}^p$, on \mathfrak{H}_p .

The above necessary condition (6.12) shows that, whenever we fix a projection $\alpha^p_{\chi_K}$ on \mathfrak{H}_p (with $\mu_p(K) = 1$), one may take a partial isometry $\alpha^p_{\chi_{x_0K_0}}$ on \mathfrak{H}_p , whenever

$$x_0^2 K_0 = K$$

having its both initial and final projections $\alpha_{\chi_K}^p$. By the property of μ_p , one automatically obtains that

$$\mu_p(x_0^2 K_0) = \mu_p(K_0) = \mu_p(K) = 1.$$

Notice that the choice of K_0 , for a fixed K, is not unique, i.e., one may have multi-partial isometries having both initial and final projections $\alpha_{\chi_K}^p$ on $mathfrakH_p$. Assume now that, for a fixed compact-open subgroup K of G_p with $\mu_p(K) = 1$, there are "distinct" compact-open subgroups K_j of G_p such that

$$x_j K_j = x_j^{-1} K \text{ and } \mu_p(K_j) = 1,$$
 (6.14)

for some $x_j \in G_p$, for $j = 1, \ldots, N$, for $N \in \mathbb{N}$.

Then by (6.12), the operators $\alpha_{\chi_{x_j}K_j}^p$ are self-adjoint partial isometries having their initial and final projections $\alpha_{\chi_K}^p$ on \mathfrak{H}_p , for $j = 1, \ldots, N$. And, by (6.14), one can understand the partial isometries $\alpha_{\chi_{x_j}K_j}^p$ as certain perturbed operators $\alpha_{\chi_{x_j}^{-1}K}^p$

induced by $x_j^{-1}K$, satisfying (6.14) for all $j = 1, \ldots, N$, i.e.,

$$\alpha_{\chi_{x_jK_j}}^p = \alpha_{\chi_{x_i^{-1}K}}^p \text{ on } \mathfrak{H}_p \quad \text{for all} \quad j = 1, \dots, N.$$

The above equality holds by the quotient relation \mathcal{R}_p on the normal-cored Hecke Hilbert space \mathfrak{H}_p .

Let us denote these partial isometries $\alpha_{\chi_{x_jK_j}}^p = \alpha_{\chi_{x^{-1}K}}^p$ simply by T_j^K for $j=1,\ldots,N.$

Theorem 6.3. Let T_j^K be distinct partial isometries $\alpha_{\chi_{x_jK_j}}^p = \alpha_{\chi_{x_i}^{-1}K}^p$ satisfying (6.14), whose initial and final projections $\alpha_{\chi_K}^p$, for $j = 1, \ldots, N$, for $N \in \mathbb{N}$, where

$$K_j \lhd G_p \text{ for } j = 1, \dots, N$$

(and hence, $K \triangleleft G_p$, too, by (6.14)). Then the subgroup generated by $\{T_j^K\}_{j=1}^N$ (under the operator-multiplication on the operator algebra $B(\mathfrak{H}_p)$ is group-isomorphic to a quotient group \mathfrak{T}_N ,

$$\mathfrak{T}_N = \mathcal{F}\left(\{a_j\}_{j=1}^N\right) / \{a_j^2 = e_N\}_{j=1}^N$$

where $\mathcal{F}(\{a_j\}_{j=1}^N)$ is the free group generated by $\{a_j\}_{j=1}^N$, and $\{a_j^2 = e_N\}_{j=1}^N$ is the relator set of \mathfrak{T}_N , where e_N is the group-identity of \mathfrak{T}_N .

Proof. Let $T_j^K = \alpha_{\chi_{x_i K_i}}^p$ be given as above, and let

$$\alpha_{\chi_{K}}^{p}\left(\mathfrak{H}_{p}\right)\overset{denote}{=}\mathfrak{H}_{p}^{K}$$

be the subspace of \mathfrak{H}_p . Since $\alpha_{\chi_K}^p$ is a well-defined projection on \mathfrak{H}_p , its image \mathfrak{H}_p^K is indeed a well-determined (closed) subspace of \mathfrak{H}_p . Moreover, it is both the initial and final subspaces of T_j^K , by (6.12) and (6.14), for all $j = 1, \ldots, N$, in \mathfrak{H}_p .

So without loss of generality, one can understand T_j^K are operators in the operator (sub-)algebra $B(\mathfrak{H}_p^K)$ of $B(\mathfrak{H}_p)$ for $j = 1, \ldots, N$. By understanding $\{T_j^K\}_{j=1}^N$ as a subset of $B(\mathfrak{H}_p^K)$, one can define the (multiplicative) subgroup \mathfrak{T}_N^K (under operator multiplication on $B(\mathfrak{H}_p^K)$), by the group generated finitely by $\{T_j^K\}_{j=1}^N$, i.e.,

$$\mathfrak{T}_{N}^{K} \stackrel{def}{=} \left\langle \{T_{j}^{K}\}_{j=1}^{N} \right\rangle \subseteq B(\mathfrak{H}_{p}^{K}) \subseteq B(\mathfrak{H}_{p}), \tag{6.15}$$

where $\langle X \rangle$ mean here the groups generated by sets X.

Now let \mathfrak{T}_N be the group,

$$\mathfrak{T}_{N} = \mathcal{F}\left(\{a_{j}\}_{j=1}^{N}\right) / \{a_{j}^{2} = e_{N}\}_{j=1}^{N}, \qquad (6.16)$$

where $\mathcal{F}(X)$ mean the (noncommutative) free groups generated by sets X.

Define now a morphism

$$\Omega:\mathfrak{T}_N^K\to\mathfrak{T}_N$$

by the binary-operation-preserving map such that

$$\Omega\left(T_{j}^{K}\right) = a_{j} \quad \text{for} \quad j = 1, \dots, N \tag{6.17}$$

(with possible re-arrangements), where \mathfrak{T}_N^K is in the sense of (6.15), and \mathfrak{T}_N is in the sense of (6.16).

Since both \mathfrak{T}_N^K and \mathfrak{T}_N have N-generators, the generator-and-operation-preserving morphism Ω of (6.17) is bijective. It also satisfies that

$$\Omega\left(\left(T_j^K\right)^2\right) = a_j^2 = e_N \quad \text{for all} \quad j = 1, \dots, N.$$
(6.18)

Indeed, by definition, one has

$$(T_j^K)^2 = \left(\alpha_{\chi_{x_jK_j}}^p\right)^2 = \alpha_{\chi_{x_jK_j}*\chi_{x_jK_j}}^p = \alpha_{\mu_p(K_j)\chi_{x_j^2K_j}}^p = \alpha_{\chi_K}^p = 1_{\mathfrak{H}_p^K},$$

where $1_{\mathfrak{H}_p^K}$ means the identity operator on the subspace \mathfrak{H}_p^K (in $B(\mathfrak{H}_p^K)$) of \mathfrak{H}_p . Thus, the formula (6.18) holds.

Remark that even though K_1, \ldots, K_N are normal in G_p , one has

$$T_i^K T_j^K = \alpha_{\chi_{x_1K_1} * \chi_{x_2K_2}}^p = \alpha_{\mu_p(K_{1,2}^o)\chi_{x_{1,2}K_{1,2}}}^p \neq \alpha_{\mu_p(K_{2,1}^o)\chi_{x_{2,1}K_{2,1}}}^p = T_j^K T_i^K,$$

in general, in \mathfrak{T}_N^K , because $x_{1,2} \neq x_{2,1}$ in G_p , while $K_{1,2} = K_{2,1}$ in G_p .

Therefore, the bijective generator-and-operation-preserving morphism Ω also preserves the relations between \mathfrak{T}_N^K and \mathfrak{T}_N , and hence, it is a well-determined group-isomorphism from \mathfrak{T}_N^K onto \mathfrak{T}_N , i.e., two groups \mathfrak{T}_N^K and \mathfrak{T}_N are group-isomorphic.

Notice that in the above theorem, the normality condition for K_1, \ldots, K_N is crucial.

By the above theorem we obtain the following sub-structure theorem in $\alpha^p(\mathcal{H}(G_p))$ in $B(\mathfrak{H}_p)$.

Theorem 6.4. Under the same hypothesis with the above theorem, the C^* -subalgebra generated by $\{T_j^K\}_{j=1}^N$ in $B(\mathfrak{H}_p)$ is *-isomorphic to the group C^* -algebra $C^*_{l^2(\mathfrak{T}_N)}(\mathfrak{T}_N)$ in the sense of Section 2.3, i.e.,

$$C^*_{\mathfrak{H}^K_p}\left(\mathfrak{T}^K_N\right) \stackrel{*-iso}{=} C^*_{l^2(\mathfrak{T}_N)}\left(\mathfrak{T}_N\right),\tag{6.19}$$

where $C^*_H(X)$ mean the C^* -subalgebras of B(H) generated by subsets X of B(H) over Hilbert spaces H.

Proof. By the above theorem the (sub)group \mathfrak{T}_N^K of (6.14) generated by $\{T_j^K\}_{j=1}^N$ (in $B(\mathfrak{H}_p^K) \subseteq B(\mathfrak{H}_p)$) is group-isomorphic to the group \mathfrak{T}_N of (6.16), by the group-isomorphism Ω of (6.17), i.e.,

$$\mathfrak{T}_N^K \stackrel{\text{Group}}{=} \mathcal{F}\left(\{a_j\}_{j=1}^N\right) / \{a_j^2 = a_j\}_{j=1}^N = \mathfrak{T}_N.$$

Therefore, the group C^* -algebra

$$C^*\left(\mathfrak{T}_N^K\right) \stackrel{denote}{=} C^*_{\mathfrak{H}_p^K}\left(\mathfrak{T}_N^K\right) = \overline{\mathbb{C}\left[\mathfrak{T}_N^K\right]} \text{ of } B(\mathfrak{H}_p^K)$$

is *-isomorphic to the group C^* -algebra

$$C^*(\mathfrak{T}_N) \stackrel{denote}{=} C^*_{l^2(\mathfrak{T}_N)}(\mathfrak{T}_N) = \overline{\mathbb{C}\left[u(\mathfrak{T}_N)\right]} \text{ of } B\left(l^2(\mathfrak{T}_N)\right),$$

where u means the left-regular unitary representation in the sense of Section 2.3. Indeed, one can extend the group-isomorphism Ω of (6.17) under linearization, i.e., we have a morphism

$$\Omega_o: C^*\left(\mathfrak{T}_N^K\right) \to C^*\left(\mathfrak{T}_N\right),$$

such that

$$\Omega_o\left(\sum_{j=1}^n t_j T_j^K\right) \stackrel{def}{=} \sum_{j=1}^N t_j \Omega\left(T_j^K\right) = \sum_{j=1}^n t_j u\left(a_j\right),$$

for $t_j \in \mathbb{C}, j = 1, ..., n$ and $n \in \mathbb{N} \cup \{\infty\}$ (under C*-topology). It is not difficult to check Ω_o is a *-isomorphism.

The characterization (6.19) shows that $\alpha^p(\mathcal{H}(G_p))$ contains group C^* -algebras (*-isomorphic to) $C^*(\mathfrak{T}_N)$, for $N \in \mathbb{N}$, where \mathfrak{T}_N are in the sense of (6.16), whenever there are compact-open normal subgroups K with $\mu_p(K) = 1$, and distinct compact-open subgroups K_j with $\mu_p(K_j) = 1$, satisfying

$$x_j K_j = x_j^{-1} K$$
 for $j = 1, \dots, N$.

As in above theorems we assume K is a normal compact-open subgroup of G_p with $\mu_p(K) = 1$, and

$$x_j K_j = x_j^{-1} K$$
 with $\mu_p(K_j) = 1$

for all $j = 1, \ldots, N$.

As a special case we consider the following conditions (6.20) and (6.21) below; suppose that the non-identity group elements x_j of G_p are self-invertible in the sense that:

$$x_j = x_j^{-1} \iff x_j^2 = u_p = x_j^{-2}$$
, the group-identity of G_p (6.20)

for all $j = 1, \ldots, N$.

And for the compact-open normal subgroup K, take

$$K_j = x_j K \quad \text{for all} \quad j = 1, \dots, N. \tag{6.21}$$

Then automatically we have that

$$\mu_p(K_j) = 1$$
 for all $j = 1, ..., N$.

Remark 6.5. Indeed, such group elements x_j exist in G_p . For instance, if we let

$$x = \begin{pmatrix} a & b \\ \frac{1-a^2}{b} & -a \end{pmatrix} \in G_p,$$

for $a, b \in \mathbb{Q}_p$, then $x^2 = u_p$ in G_p . So, one may take finitely many distinct elements x_1, \ldots, x_N in G_p , for some $N \in \mathbb{N}$.

Moreover, for a fixed normal subgroup K of G_p , we can take such x_1, \ldots, x_N in G_p , which are not contained in K. For instance, if K is the normal core U_{G_p} of $U = GL_2(\mathbb{Z}_p)$, then we can take

$$x_1 = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix}$$
 and $x_2 = \begin{pmatrix} 3 & 8 \\ -1 & -3 \end{pmatrix}$ in G_p ,

satisfying $x_1, x_2 \notin U_{G_p}$ and hence, $x_1 U_{G_p}$ and $x_2 U_{G_p}$ are as in (6.21).

Remark that

$$x_1x_2 = \begin{pmatrix} 3 & 7 \\ -1 & -2 \end{pmatrix} \neq \begin{pmatrix} -2 & -7 \\ 1 & 3 \end{pmatrix} = x_2x_1$$

in $G_p.$ So, the group generated by $\{x_1U_{G_1},x_2U_{G_2}\}$ is group-isomorphic to the noncommutative group

$$\mathcal{F}(\{a_1, a_2\})/\{a_j^{-1} = a_j\}_{j=1}^2.$$

The corresponding operators $T_j^K = \alpha_{\chi_{K_j}}^p$ are partial isometries on \mathfrak{H}_p , whose initial and final projections are the projection $\alpha_{\chi_K}^p$ on \mathfrak{H}_p . Therefore, one can obtain the group,

$$\mathfrak{T}_{N}^{K} = \left\langle \{T_{j}^{K} = \alpha_{\chi_{x_{j}K}}^{p}\}_{j=1}^{N} \right\rangle, \tag{6.22}$$

generated by $\{T_j^K\}_{j=1}^N$, as a multiplicative subgroup of the operator algebra $B(\mathfrak{H}_p^K)$, where $\mathfrak{H}_p^K = \alpha_{\chi_K}^p(\mathfrak{H}_p)$ is the subspace of \mathfrak{H}_p . Note that

$$T_{j}^{K}T_{j}^{K} = \alpha_{\chi_{K_{i}}}^{p}\alpha_{\chi_{K_{j}}}^{p} = \alpha^{p}\alpha_{\mu_{p}(K \cap K)\chi_{x_{1}x_{2}KK}}^{p} = \alpha_{\chi_{x_{1}x_{2}K}}^{p}.$$
 (6.23)

Assumption and Notation 6.6 (in short, AN 6.6 from below). In the rest of this paper if we write a group \mathfrak{T}_N^K , then it means a group (6.22), which is a special case of the general construction (6.15), satisfying (6.23), i.e.,

$$K_j = x_j K$$

of (6.21), where x_j satisfy (6.20), for j = 1, ..., N. But if we need to handle general cases as in (6.15) and (6.19), we will state clearly in the text.

By the group-isomorphic relation in the general format of (6.15) with (6.16), a group \mathfrak{T}_N^K of AN 6.6 is group-isomorphic to the group \mathfrak{T}_N of (6.16), too.

Recall that the group \mathfrak{T}_N of (6.16) is defined to be the quotient group

$$\mathcal{F}\left(\{a_j\}_{j=1}^N\right)/\{a_j^{-1}=a_j\}_{j=1}^N.$$

In fact, the group \mathfrak{T}_N is naturally group-isomorphic to the finitely presented group \mathfrak{F}_N ,

$$\mathfrak{F}_N = \left\langle \{w_j\}_{j=1}^N, \left\{ \begin{array}{c} w_j^2 = e_N, \text{ and} \\ w_i w_j = w_j w_i \end{array} \right\}_{i,j=1}^N \right\rangle, \tag{6.24}$$

i.e.,

$$\mathfrak{T}_N \stackrel{\mathrm{Group}}{=} \mathfrak{F}_N.$$

By the above discussions, we obtain the following refined results under AN 6.6.

Corollary 6.7. Let \mathfrak{T}_N^K be a group in the sense of (6.22) under AN 6.6. Then it is group-isomorphic to the finitely generated group \mathfrak{F}_N of (6.24). Moreover, the group C^* -algebra $C^*_{\mathfrak{H}_p^K}(\mathfrak{T}_N^K)$ is *-isomorphic to the group C^* -algebra $C^*_{l^2(\mathfrak{F}_N)}(\mathfrak{F}_N)$, i.e.,

$$\mathfrak{T}_{N}^{K} \stackrel{Group}{=} \mathfrak{F}_{N} \stackrel{def}{=} \left\langle \{a_{j}\}_{j=1}^{N}, \left\{ \begin{array}{c} a_{j} = a_{j}^{-1} \text{ and } \\ a_{i}a_{j} = a_{j}a_{i} \end{array} \right\}_{i, j=1}^{N} \right\rangle, \tag{6.25}$$

and

$$C^*_{\mathfrak{H}_p^K}(\mathfrak{T}_N^K) \stackrel{*-iso}{=} C^*_{l^2(\mathfrak{F}_N)}(\mathfrak{F}_N).$$

Proof. By the discussion in the above paragraphs, the group \mathfrak{T}_N of (6.16) is group-isomorphic to \mathfrak{F}_N of (6.24), by (6.20), (6.21) and (6.23) (under AN 6.6).

So one can define a morphism $\Psi : \mathfrak{T}_N \to \mathfrak{F}_N$ by a generator-preserving bijection between the two finite sets,

$$\Psi(a_j) = w_j \quad \text{for all} \quad j = 1, \dots, N,$$

such that

$$\Psi(a_i a_j) = \Psi(a_i)\Psi(a_j) = w_i w_j$$

(under possible re-arrangements) for all i, j = 1, ..., N.

Therefore, one has that

$$\mathfrak{T}_N^K \stackrel{\mathrm{Group}}{=} \mathfrak{T}_N \stackrel{\mathrm{Group}}{=} \mathfrak{F}_N.$$

By the above group-isomorphic relations we obtain

$$C^*_{\mathfrak{H}^K_p}\left(\mathfrak{T}^K_N\right) \stackrel{*-\mathrm{iso}}{=} C^*_{l^2(\mathfrak{T}_N)}\left(\mathfrak{T}_N\right) \stackrel{*-\mathrm{iso}}{=} C^*_{l^2(\mathfrak{F}_N)}\left(\mathfrak{F}_N\right). \qquad \Box$$

7. FREE STRUCTURES ON $C^*(\mathfrak{T}_N^K)$

In this section we study freeness conditions on our group C^* -algebras and their structure theorems.

Now let K be a fixed normal compact-open subgroup of G_p , with $\mu_p(K) = 1$, and hence, the corresponding operator $T^K = \alpha_{\chi_K}^p$ is a projection on the Hecke Hilbert space \mathfrak{H}_p , acting as the identity operator on the subspace $\mathfrak{H}_p^K = T^K(\mathfrak{H}_p)$ in \mathfrak{H}_p . Assume further that there exist distinct self-invertible group elements $x_j \in G_p$ in the sense that: $x_j^{-1} = x_j$, and distinct subsets K_j of G_p with $\mu_p(K_j) = 1$, such that

$$K_j = x_j^{-1}K = x_jK \quad \text{for all} \quad j = 1, \dots, N,$$

as in AN 6.6. Then, by (6.12), the corresponding operators $T_j^K = \alpha_{\chi_{K_j}}^p$ are the partial isometries on \mathfrak{H}_p with their initial and final projections identified with $T^K = \alpha_{\chi_K}^p$, for $j = 1, \ldots, N$.

We have seen in (6.19) and (6.25) the C^* -algebra $C^*(\mathfrak{T}_N^K)$ is *-isomorphic to the group C^* -algebra $C^*(\mathfrak{T}_N)$ generated by the finitely generated group,

$$\mathfrak{T}_N \stackrel{\text{Group}}{=} \left\langle \{a_j\}_{j=1}^N, \left\{ \begin{array}{c} a_j^2 = e_N \text{ and } \\ a_i a_j = a_j a_i \end{array} \right\}_{i, j=1}^N \right\rangle.$$

Let's denote $C^*(\mathfrak{T}_N^K)$ and $C^*(\mathfrak{T}_N)$ simply by $\mathfrak{C}_{K,N}^*$, and \mathfrak{C}_N^* , respectively. Because of the *-isomorphic relations between $\mathfrak{C}_{K,N}^*$ and \mathfrak{C}_N^* we sometimes use $\mathfrak{C}_{K,N}^*$ and \mathfrak{C}_N^* , alternatively, as a same object. However, whenever we emphasize such C^* -algebras \mathfrak{C}_N^* are constructed from our Hecke representational setting we will precisely use the term $\mathfrak{C}_{K,N}^*$.

7.1. FREE-DISTRIBUTIONAL DATA ON $\mathfrak{C}_{K,N}^*$

Let \mathfrak{T}_N^K be the group in the general sense of (6.14) and $\mathfrak{C}_{K,N}^*$, the corresponding group C^* -algebra generated by \mathfrak{T}_N^K (without AN 6.6). On the C^* -subalgebra $\mathfrak{C}_{K,N}^*$

of $B(\mathfrak{H}_p^K) \subseteq B(\mathfrak{H}_p)$, define a linear functional, also denoted by ψ_p , by a morphism satisfying

$$\psi_p\left(T_j^K\right) = \psi_p\left(\alpha_{\chi_{x_jK_j}}^p\right) \stackrel{def}{=} \psi_p\left(\chi_{x_jK_j}\right) = \varphi_p\left(\chi_{x_jK_j:G_p}\right)$$
$$= \varphi_p\left(\chi_{x_jK_j}\right) = \chi_{x_jK_j}(u_p) = \frac{\mu_p\left(x_jK_j \cap K_j\right)}{\mu_p(K_j)},$$
(7.1)

by the normality conditions for K_1, \ldots, K_N , where $K_{j:G_p}$ means the normal core $\operatorname{Core}_{G_p}(K_j)$ of K_j in G_p , as in Section 3 and where ψ_p in the second equality $\stackrel{def}{=}$ of (7.1) means the normal-cored linear functional $\varphi_p \circ E_p$ on the Hecke algebra $\mathcal{H}(G_p)$ in the sense of (4.10) and φ_p is the canonical linear functional on the normal Hecke algebra \mathcal{H}_{Y_p} in the sense of (3.12).

The pair $(\mathfrak{C}_{K,N}^*, \psi_p)$ becomes a well-determined a C^* -probability space in the sense of [12] and [13].

Definition 7.1. The C^* -probability space $(\mathfrak{C}^*_{K,N}, \psi_p)$ is called the K(-concentrated-- C^*)-Hecke probability space on \mathfrak{H}_p^K (or, on \mathfrak{H}_p).

Remark that since

$$x_j K_j = x_j^{-1} K$$
 for all $j = 1, \dots, N$,

one has that

$$K_j = x_j^{-2} K$$
 for all $j = 1, \dots, N$, (7.2)

and hence,

$$\psi_p\left(T_j^K\right) = \frac{\mu_p\left(x_jK_j \cap K_j\right)}{\mu_p(K_j)} = \frac{\mu_p\left(x_j^{-1}K \cap x_j^{-2}K\right)}{\mu_p(x_j^{-2}K)} = \mu_p\left(x_j^{-1}K \cap x_j^{-2}K\right)$$
(7.3)

by (7.2), for all j = 1, ..., N. Notice here in (7.3) that

$$x \in gK \cap g^2 K \Leftrightarrow x = gk_1 \text{ and } x = g^2 k_2, \text{ for some } k_1, k_2 \in K$$
$$\Leftrightarrow g^{-1}x = k_1 \text{ and } g^{-1}x = gk_2$$
$$\Leftrightarrow g^{-1}x \in K \cap gK$$
$$\Leftrightarrow x \in q (K \cap qK),$$

and hence one has

$$gK \cap g^2 K \subseteq g(K \cap gK) \quad \text{for} \quad g \in G_p.$$

Similarly,

$$x \in g (K \cap gK) \Leftrightarrow x = gv \text{ with } v = k_1 = gk_2, \text{ for some } k_1, k_2 \in K$$
$$\Leftrightarrow x = gk_1 \text{ and } x = g^2k_2$$
$$\Leftrightarrow x \in gK \cap g^2K,$$

and hence we have

$$g(K \cap gK) \subseteq gK \cap g^2K$$
 for $g \in G_p$.

Therefore,

$$gK \cap g^2 K = g\left(K \cap gK\right),$$

for a compact-open subgroup K of G_p , and $g \in G_p$. So, the second equality of (7.3) indeed holds.

It shows that the formula (7.3) can be re-written by

$$\psi_p(T_j^K) = \mu_p(x_j^{-1}K \cap x_j^{-2}K) = \mu_p(x_j^{-1}(K \cap x_j^{-1}K)) = \mu_p(K \cap x_j^{-1}K),$$

i.e.,

$$\psi_p\left(T_j^K\right) = \mu_p\left(K \cap x_j^{-1}K\right) \tag{7.4}$$

for all j = 1, ..., N, since $\mu_p(K) = 1$. So, one can conclude that

$$\psi_p\left(T_j^K\right) = \mu_p\left(x_jK \cap K\right) = \frac{\mu_p\left(x_jK \cap K\right)}{\mu_p(K)}$$

= $\frac{\mu_p\left(x_jK \cap u_pK\right)}{\mu_p(K)} = \psi_p\left(\chi_{x_jK}\right) = \varphi_p\left(\chi_{x_jK}\right),$ (7.5)

by the normality of K, where u_p is the group-identity of G, by the normality of K in G_p . By (7.5), it is not difficult to check that

$$\psi_p(T_K) = \psi_p(\alpha_{\chi_K}^p) = \psi_p(\chi_K) = \chi_K(u_p) = \frac{\mu_p(K \cap u_p K)}{\mu_p(K)} = 1.$$

It shows that the K-Hecke probability space $(\mathfrak{C}^*_{K,N},\psi_p)$ is unital in the sense that

$$\psi_p(T^K) = \psi_p\left(\mathbf{1}_{\mathfrak{C}_{K,N}^*}\right) = 1,$$

because T^K is the identity operator $1_{\mathfrak{C}^*_{K,N}}$ on \mathfrak{H}^K_p in $\mathfrak{C}^*_{K,N}$.

Observe now that

$$\psi_p\left(\prod_{k=1}^n T_{i_k}^K\right) = \psi_p\left(\underset{k=1}^n \chi_{x_{i_k}K_{i_k}}\right) = \psi_p\left(\underset{k=1}^n \chi_{x_{i_k}}K\right)$$

by (7.2)

$$=\psi_p\left(\mu_p(K)^{n-1}\chi_{x_{i_1}^{-1}x_{i_2}^{-1}\dots x_{i_n}^{-1}K}\right)$$

by the normality condition for K

$$= \frac{\mu_p(K)^{n-1}\mu_p\left((x_{i_n}\dots x_{i_1})^{-1}K\cap K\right)}{\mu_p(K)}$$

= $\frac{\mu_p\left((x_{i_n}\dots x_{i_1})^{-1}K\cap K\right)}{\mu_p(K)}$
= $\mu_p\left((x_{i_n}\dots x_{i_2}x_{i_1})^{-1}K\cap K\right)$ (7.6)

refining (7.4) and (7.5).

The above formulas (7.5) and (7.6) are also obtained under AN 6.6, too. **Theorem 7.2.** If $(i_1, ..., i_n) \in \{1, ..., N\}^n$, for $n \in \mathbb{N}$, then

$$\psi_p\left(\prod_{k=1}^n T_{i_k}^K\right) = \mu_p\left(\left(\prod_{k=0}^{n-1} x_{i_{n-k}}\right)^{-1} K \cap K\right).$$
(7.7)

Proof. The proof of (7.7) is done by formula (7.6).

So one obtains the following corollary immediately.

Corollary 7.3. Under AN 6.6, if $(i_1, \ldots, i_n) \in \{1, \ldots, N\}^n$ for $n \in \mathbb{N}$, then

$$\psi_p\left(\prod_{k=1}^n T_{i_k}^K\right) = .\mu_p\left(\left(\prod_{k=0}^{n-1} x_{i_{n-k}}\right)K \cap K\right).$$
(7.8)

The above formula (7.7) (or (7.8)) characterizes the free-distributional data of our partial isometries $\{T_j^K\}_{j=1}^N$ (resp., under AN 6.6). For $(i_1, \ldots, i_n) \in \{1, \ldots, N\}^n$, for $n \in \mathbb{N}$, consider now the free cumulants,

$$k_n\left(T_{i_1}^K, \ T_{i_2}^K, \dots, T_{i_n}^K\right) = \sum_{\pi \in NC(n)} \left(\prod_{V \in \pi} \left(\psi_p\left(\prod_{j \in V}^o T_{i_j}^K\right) \mu\left(0_{|V|}, \ 1_{|V|}\right)\right)\right)$$

by the Möbius inversion of Section 2.2, where $k_n(...)$ means the free cumulant for ψ_p on $\mathfrak{C}^2_{K,N}$

$$= \sum_{\pi \in NC(n)} \left(\prod_{V \in \pi} \left(\frac{\mu_p \left(\left(\prod_{j \in V} x_{i_j}^{-1} \right) K_{G_p} \cap K_{G_p} \right)}{\mu_p(K_{G_p})} \mu \left(0_{|V|}, 1_{|V|} \right) \right) \right).$$
(7.9)

By the free cumulant formula (7.9), we obtain the following equivalent free-distributional data with (7.7) for the partial isometries $\{T_j^K\}_{j=1}^N$ generating $\mathfrak{C}_{K,N}^*$ in the K-Hecke probability space $(\mathfrak{C}_{K,N}^*, \psi_p)$.

Proposition 7.4. Under the same hypothesis with (7.8) one has

$$k_n \left(T_{i_1}^K, \ T_{i_2}^K, \dots, T_{i_n}^K \right)$$

=
$$\sum_{\pi \in NC(n)} \left(\prod_{V \in \pi} \left(\mu_p \left(\left(\prod_{j \in V} x_{i_j}^{-1} \right) K \cap K \right) \ \mu \left(0_{|V|}, \ 1_{|V|} \right) \right) \right)$$
(7.10)

for all $(i_1, \ldots, i_n) \in \{1, \ldots, N\}^n$ and $n \in \mathbb{N}$.

Proof. The proof of (7.10) is done by (7.9).

The above computation (7.10) provides the following freeness necessary condition on our group C^* -probability space $(\mathfrak{C}^*_{K,N}, \psi_p)$.

Theorem 7.5. Let $\mathfrak{C}_{K,N}^*$ be the group C^* -subalgebra of $B(\mathfrak{H}_p^K)$ generated by the group \mathfrak{T}_N^K . Assume that the generators $T_j^K = \alpha_{\chi_x^{-1}K}^p$ satisfy that

$$\mu_p \left(x_{i_1}^{-1} K \cap K \right) = \mu_p \left(x_{i_2}^{-1} K \cap K \right)$$
(7.11)

for all $i_1, i_2 = 1, ..., N$ and

$$\mu_p\left(\left(x_{j_1}^{-1}x_{j_2}^{-1}\dots x_{j_k}^{-1}\right)K \cap K\right) = \mu_p\left(x_{j_1}^{-1}K \cap K\right)$$
(7.12)

for all $(j_1, \ldots, j_k) \in \{1, \ldots, N\}^k$, where the entries j_1, \ldots, j_k are all mutually distinct in the k-tuples for all $k \in \mathbb{N}$. Then the family $\{T_j^K\}_{j=1}^N$ is a free family in $(\mathfrak{C}_{K,N}^*, \psi_p)$, in the sense that: all elements of the family are free in $(\mathfrak{C}_{K,N}^*, \psi_p)$ from each other.

Proof. Assume the generator set $\{T_j^K\}_{j=1}^N$ of the group \mathfrak{T}_N^K satisfies the above two conditions (7.11) and (7.12). Then by (7.10) we obtain a quantity β_o such that

$$\beta_o = \mu_p(x_j^{-1}K \cap K)$$
 for any $j = 1, \dots, N$.

Thus for any "mixed" *n*-tuple, $(i_1, \ldots, i_n) \in \{1, \ldots, N\}^n$, one has

$$k_n \left(T_{i_1}^K, \ T_{i_2}^K, \dots, T_{i_n}^K \right) = \beta_o \left(\sum_{\pi \in NC(n)} \left(\prod_{V \in \pi} \mu \left(0_{|V|}, \ 1_{|V|} \right) \right) \right)$$
$$= \beta_o \left(\sum_{\pi \in NC(n)} \mu \left(\pi, \ 1_n \right) \right) = 0,$$

by Section 2.2, for all $n \in \mathbb{N} \setminus \{1\}$. Therefore the generator set $\{T_j^K\}_{j=1}^N$ of \mathfrak{T}_N^K is a free family.

7.2. FREENESS ON $\mathfrak{C}^*_{K,N}$

In this section we concentrate on freeness on our graph C^* -subalgebra $\mathfrak{C}_{K,N}^*$ generated by \mathfrak{T}_N^K in $B(\mathfrak{H}_p^K)$. Throughout this section we restrict our interests to the special case where \mathfrak{T}_N^K are under AN 6.6, for convenience. Remark that even though we are in the general setting, the main results of this section would be similar.

Recall the *-isomorphic relation between $\mathfrak{C}_{K,N}^*$ and \mathfrak{C}_N^* , where \mathfrak{C}_N^* is the group C^* -algebra generated by the group,

$$\mathfrak{T}_{N} \stackrel{def}{=} \mathcal{F}\left(\{a_{j}\}_{j=1}^{N}\right) / \{a_{j} = a_{j}^{-1}\}_{j=1}^{N}$$

$$\stackrel{\text{Group}}{=} \left\langle \{a_{j}\}_{j=1}^{N}, \left\{\begin{array}{c}a_{j}^{-1} = a_{j} \text{ and}\\a_{i}a_{j} = a_{j}a_{i}\end{array}\right\}_{i, j=1}^{N}\right\rangle.$$
(7.13)

Like the above necessary freeness conditions (7.11) and (7.12), one can verify that in some cases, the generator set $\{T_j^K\}_{j=1}^N$ of the group \mathfrak{T}_N^K forms a free family in our *K*-Hecke probability settings.

Corollary 7.6. Under AN 6.6, assume that the conditions (7.11) and (7.12) hold. Then the subgroup \mathfrak{T}_N^K of (6.22) in $B(\mathfrak{H}_p^K)$ is group-isomorphic to the quotient group

$$G_N^2 = \frac{N}{j=1} \left\langle a_j : a_j^{-1} = a_j \right\rangle,$$
(7.14)

where (\star) in (7.13) means the "free product of groups" for i, j = 1, ..., N. Therefore, in this case, the C^{*}-algebra $\mathfrak{C}_{K,N}^*$ is *-isomorphic to the group C^{*}-algebra C^{*} (G_N^2), i.e.,

$$\mathfrak{C}_{K,N}^{*} \stackrel{*-iso}{=} C^{*} \left(G_{N}^{2} \right). \tag{7.15}$$

Proof. If the conditions (7.11) and (7.12) hold, then the generators $\{T_j^K\}_{j=1}^N$ of the subgroup \mathfrak{T}_N^K of (7.13) are free from each other in $(\mathfrak{C}_{K,N}^*, \psi_p)$. Moreover, in such a case, the group \mathfrak{T}_N^K is group-isomorphic to G_N^2 of (7.13), since \mathfrak{T}_N^K forms a free family (under quotient). Thus, the group-isomorphic relation (7.14) holds.

Therefore, in this case, one has

$$C^*\left(\mathfrak{T}_N^K\right) = \mathfrak{C}_{K,N}^* \stackrel{\text{*-iso}}{=} C^*(G_N^2),$$

by (7.14). So, the *-isomorphic relation (7.16) holds.

In the proof of (7.16) the freeness on \mathfrak{T}_N^K (from (7.11) and (7.12)) in $(\mathfrak{C}_{K,N}^*, \psi_p)$ is critical i.e., If \mathfrak{T}_K^N is generated by a free family $\{T_j\}_{j=1}^N$, then

$$\mathfrak{T}_N^K \stackrel{\text{Group}}{=} G_N^2$$
, and $\mathfrak{C}_{K,N}^* \stackrel{\text{s-iso}}{=} C^* (G_N^2)$.

Theorem 7.7. Under AN 6.6, if the set $\{T_j^K\}_{j=1}^N$ of partial isometries forms a free family in $(\mathfrak{C}_{K,N}^*, \psi_p)$, then the subgroup \mathfrak{T}_N^K of (6.22) in $B(\mathfrak{H}_p^K)$ is group-isomorphic to the quotient group

$$G_N^2 = \frac{N}{j=1} \left\langle a_j : a_j^{-1} = a_j \right\rangle,$$
(7.16)

where (\star) means the "commutative" group-free product. And the corresponding group C^* -algebra $\mathfrak{C}^*_{K,N}$ is *-isomorphic to the group C^* -algebra $C^*(G^2_N)$,

$$\mathfrak{C}_{K,N}^* \stackrel{*\text{-}iso}{=} C^* \left(G_N^2 \right) \stackrel{*\text{-}iso}{=} \frac{N}{\overset{*}{\underset{j=1}{\star}}} C^* \left(\left\langle a_j : a_j^{-1} = a_j \right\rangle \right).$$

Proof. The proof is done by similar arguments for the above corollary under arbitrary freeness on $\{T_j^K\}_{j=1}^N$ in $(\mathfrak{C}_{K,N}^*, \psi_p)$. Remark that in the above corollary, we give necessary freeness condition from (7.11) and (7.12), while here we simply assume the generators of \mathfrak{T}_N^K are free from each other under AN 6.6.

Assume now that $\{T_j^K\}_{j=1}^N$ under AN 6.6 forms a free family in $(\mathfrak{C}_{K,N}^*, \psi_p)$. Then for any *n*-tuple (i_1, \ldots, i_n) of $\{1, \ldots, N\}^n$, for $n \in \mathbb{N}$, one has

$$\psi_p\left(T_{i_1}^K \ T_{i_2}^K \ \dots \ T_{i_n}^K\right) = \sum_{\pi \in NC(n)} \left(\prod_{V \in \pi} k_V\right),\tag{7.17}$$

where

$$k_V = k_{|V|} \left(T_{i_{k_1}}^K, \ T_{i_{k_2}}^K, \dots, T_{i_{k_{|V|}}}^K \right),$$

whenever $V = (i_{k_1}, \ldots, i_{k_{|V|}})$ in π , for all $\pi \in NC(n)$, where $k_n(\ldots)$ means the free cumulant in terms of the linear functional ψ_p .

By the freeness (7.16) under (7.7), all mixed free cumulants of $\{T_j^K\}_{j=1}^N$ vanish. Let $(i_1, \ldots, i_n) \in \{1, \ldots, N\}^n$, for $n \in \mathbb{N}$, and assume $\pi_{(i_1,\ldots,i_n)}$ is a noncrossing partition in NC(n) with its blocks $V_1, \ldots, V_{|\pi_{(i_1,\ldots,i_n)}|}$, where $|\pi|$ mean the numbers of blocks of noncrossing partitions π , such that: (i) each block has its form

$$V_j = (k_j, k_j, \dots, k_j), \text{ for } k_j \in \{1, \dots, N\}$$
(7.18)

for all $j = 1, ..., |\pi_{(i_1,...,i_n)}|$, and (ii) such a block V_j is maximal, under noncrossing ordering, satisfying (7.18), i.e., each block V_j of $\pi_{(i_1,...,i_n)}$ is the maximal block, consisting only of one number in $\{1,...,N\}$ for all $j = 1, ..., |\pi_{(i_1,...,i_n)}|$.

Example 7.8. For example, if N = 3, and (1, 1, 2, 2, 2, 1, 3) is fixed as a 7-tuple, then the corresponding partition $\pi_{(1,1,2,2,2,1,3)}$ in NC(7) has its blocks,

$$(1,1), (2,2,2), (1) \text{ and } (3),$$

i.e.,

$$\pi_{(1,1,2,2,2,1,3)} = \{(1,1), (2,2,2), (1), (3)\}$$
 in $NC(7)$

Also under same hypothesis, if (1, 1, 1, 2, 2, 1, 1, 1, 2) is fixed as a 9-tuple, then the corresponding partition $\pi_{(1,1,1,2,2,1,1,1,2)}$ is

$$\pi_{(1,1,1,2,2,1,1,1,2)} = \{(1,1,1), (2,2), (1,1,1), (2)\}.$$

We call such noncrossing partitions $\pi_{(i_1,\ldots,i_n)}$ the free-depending partition of $\{T_j^K\}_{j=1}^N$ for (i_1,\ldots,i_n) in NC(n). Therefore by [12] and by (7.17) and (7.18), one has that

$$\psi_p \left(T_{i_1}^K T_{i_2}^K \dots T_{i_n}^K \right) = \sum_{\pi \in NC(n)} k_\pi \left(T_{i_1}^K, \dots, T_{i_n}^K \right) = \sum_{\pi \in NC(i_1, \dots, i_n)} k_\pi \left(T_{i_1}^K, \dots, T_{i_n}^K \right),$$
(7.19)

because all mixed free cumulants of $\{T_j^K\}_{j=1}^N$ vanish under assumed freeness, where

$$NC(i_1,\ldots,i_n) \stackrel{def}{=} \left\{ \theta \in NC(n) \left| \theta \leq \pi_{(i_1,\ldots,i_n)} \right. \right\},\$$

where $\pi_{(i_1,\ldots,i_n)}$ is the free-depending partition of $\{T_j^K\}_{j=1}^N$ for (i_1,\ldots,i_n) in NC(n), and where the inclusion \leq on NC(n) is in the sense of [12].

Thus, one can obtain that if the partial isometries $\{T_j^K\}_{j=1}^N$ forms a free family then

$$\psi_p \left(T_{i_1}^K \ T_{i_2}^K \ \dots \ T_{i_n}^K \right) = \sum_{\pi \in NC(i_1, \dots, i_n)} k_\pi \left(T_{i_1}^K, \dots, T_{i_n}^K \right)$$

by (7.19)

$$= \sum_{V \in \pi_{(i_1,\ldots,i_n)}} \left(\sum_{\theta \in NC(|V|)} k_\theta \left(T_{i_1}^K, \ldots, T_{i_n}^K \right) \right) = \sum_{V \in \pi_{(i_1,\ldots,i_n)}} \psi_{p:V},$$

where

$$\psi_{p:V} = \psi_p \left(T_{i_{k_1}}^K T_{i_{k_2}}^K \dots T_{i_{k_{|V|}}}^K \right),$$

whenever

$$V = (i_{k_1}, i_{k_2}, \dots, i_{k_{|V|}})$$
 in $\pi_{(i_1, \dots, i_n)}$.

Proposition 7.9. Let $\{T_j^K\}_{j=1}^N$ be a family of partial isometries on \mathfrak{H}_p with their initial and final projections identified with T^{K} , satisfying AN 6.6. If this family forms a free family in $(\mathfrak{C}^*_{K,N}, \psi_p)$, then the joint-free-moment computations (7.19) becomes

$$\psi_p \left(T_{i_1}^K T_{i_2}^K \dots T_{i_n}^K \right) = \sum_{V \in \pi_{(i_1,\dots,i_n)}} \psi_{p:V}, \tag{7.20}$$

where

$$\psi_{p:V} = \psi_p \left(T_{i_{k_1}}^K \dots T_{i_{k_{|V|}}}^K \right) = \mu_p \left(\left(x_{i_{k_{|V|}}}^{|V|} \right)^{-1} K \cap K \right)$$

whenever $V = (i_{k_1}, i_{k_2}, \ldots, i_{k_{|V|}})$ in the free-depending partition $\pi_{(i_1,\ldots,i_n)}$ of (i_1,\ldots,i_n) in NC(n) for all $(i_1,\ldots,i_n) \in \{1,\ldots,N\}^n$ and $n \in \mathbb{N}$.

Proof. The proof of (7.20) is done by (7.7) and (7.19), as we have discussed in the above paragraph. **Example 7.10.** Assume again that N = 3, and let $\{T_1^K, T_2^K, T_3^K\}$ be a family of partial isometries satisfying both AN 6.0, and the conditions (7.11) and (7.12). Then, one can compute the following free moments as follows:

$$\psi_p\left((T_1^K)^2(T_2^K)^3(T_1^K)(T_3^K)\right) = \psi_p\left((T_1^K)^2\right) + \psi_p\left((T_2^K)^3\right) + \psi_p\left(T_1^K\right) + \psi_p(T_3^K)$$

by (7.20)

$$=\psi_p\left(\chi_{x_1K_1}^{(2)}\right)+\psi_p\left(\chi_{x_2K_2}^{(3)}\right)+\psi_p\left(\chi_{x_1K_1}\right)+\psi_p\left(\chi_{x_3K_3}\right)$$

by (7.1)

$$= \mu_p \left((x_1^2)^{-1} K \cap K \right) + \mu_p \left((x_2^3)^{-1} K \cap K \right) + \mu_p \left(x_1^{-1} K \cap K \right) + \mu_p \left(x_3^{-1} K \cap K \right)$$

by (7.7).

Similarly,

$$\begin{split} \psi_p \left((T_1^K)^3 (T_2^K)^2 (T_1^K)^3 (T_2^K) \right) \\ &= \psi_p \left((T_1^K)^3 \right) + \psi_p \left((T_2^K)^2 \right) + \psi_p \left(\left(T_1^K \right)^3 \right) + \psi_p (T_2^K) \\ &= \mu_p \left(\left(x_1^3 \right)^{-1} K \cap K \right) + \mu_p \left(\left(x_2^2 \right)^{-1} K \cap K \right) \\ &+ \mu_p \left(x_1^{-1} K \cap K \right) + \mu_p \left(x_2^{-1} K \cap K \right). \end{split}$$

Acknowledgments

The author specially thanks to editors and reviewers of Opuscula Mathematica for their kind suggestions and opinions, enriching this paper's quality.

REFERENCES

- [1] I. Cho, Operators induced by prime numbers, Methods Appl. Math. 19 (2013) 4, 313–340.
- I. Cho, Representations and corresponding operators induced by Hecke algebras, Complex. Anal. Oper. Theory, DOI: 10.1007/s11785-014-0418-7, (2014).
- [3] I. Cho, p-adic Banach space operators and adelic Banach space operators, Opuscula Math. 34 (2014) 1, 29–65.
- [4] I. Cho, Free distributional data of arithmetic functions and corresponding generating functions, Complex. Anal. Oper. Theory 8 (2014) 2, 537–570.

- [5] I. Cho, Dynamical systems of arithmetic functions determined by primes, Banach J. Math. Anal. 9 (2015), 173–215.
- [6] I. Cho, Classification on arithmetic functions and corresponding free-moment L-functions, Bulletin Korean Math. Soc. (2015), to appear.
- [7] I. Cho, T. Gillespie, Free probability on the Hecke algebra, Complex Anal. Oper. Theory, DOI: 10.1007/s11785-014-0403-1, (2014).
- [8] I. Cho, P.E.T. Jorgensen, Krein-space representations of arithmetic functions dertermined by primes, Alg. Rep. Theo. 17 (2014) 6, 1809–1841.
- [9] T. Gillespie, Superposition of zeroes of automorphic L-functions and functoriality, PhD Thesis, Univ. of Iowa, (2010).
- [10] T. Gillespie, Prime number theorems for Rankin-Selberg L-functions over number fields, Sci. China Math. 54 (2011) 1, 35–46.
- [11] F. Radulescu, Random matrices, amalgamated free products and subfactors of the C*-algebra of a free group of nonsingular index, Invent. Math. 115 (1994), 347–389.
- [12] R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Amer. Math. Soc. Mem. 132 (1998) 627.
- [13] D. Voiculescu, K. Dykemma, A. Nica, Free Random Variables, vol. 1, CRM Monograph Series, 1992.
- [14] V.S. Vladimirov, I.V. Volovich, E.I. Zelenov, p-Adic Analysis and Mathematical Physics, vol. 1, Ser. Soviet & East European Math., World Scientific, 1994.

Ilwoo Cho choilwoo@sau.edu

St. Ambrose UniversityDepartment of Mathematics and Statistics421 Ambrose Hall, 518 W. Locust St.Davenport, Iowa, 52803, USA

Received: March 30, 2015. Revised: May 19, 2015. Accepted: July 6, 2015.