Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
One of the most widely used failure criteria for rocks in the world is the Hoek-Brown failure criterion. For its use, the mi empirical parameter for a specific rock type is needed. The triaxial compression test is recommended for its determination; however, the full stress path for every rock comprises confined tension as well. This affects the course of the Hoek-Brown envelope, which is non-linear and starts at uniaxial tension. Fifty-one series of tests were carried out for three rock types: sandstone, claystone and limestone, to show the difference between the results of the mi determination, using two different approaches – so-called linear and non-linear. Moreover, the consistency between the developed simplified methods of constant determination and mi were checked. These comprised the UCS-based method, R-index method, TS-based method and advanced regression functions of compressive and tensile strength. The relationship between mi constant and the internal friction angle was checked as well. The analysis of the results showed that the consistency with the regression models developed by researchers depends on the chosen estimator. If it is derived from the triaxial test only, the results are closer to a linear determination of mi constant and have a good correlation with internal friction angle. If both tensile and compressive strength are used for its determination, the non-linear value correlates better with the advanced regression functions, but quite poor with the average compressive strength (R-index method) and tensile strength (TS-based method). Taking into account that every rock retained next to the geotechnical or mining object is not only compressed but also tensed, the non-linear mi interpretation seems to be more correct. The interlayers and discontinuities inside sedimentary rocks increase the scatter of lab results and reduce the accuracy of mi determination.
Wydawca
Czasopismo
Rocznik
Tom
Strony
485--508
Opis fizyczny
Bibliogr. 30 poz., fot., rys., tab., wykr.
Twórcy
autor
- AGH University of Krakow, Department of Geomechanics, Civil Engineering and Geotechnics, 30-059 Krakow, 30 Mickiewicza Av., Poland
autor
- AGH University of Krakow, Department of Geomechanics, Civil Engineering and Geotechnics, 30-059 Krakow, 30 Mickiewicza Av., Poland
Bibliografia
- [1] E. Hoek, E.T. Brown, Empirical strength criterion for rock masses. J. Geotech. Eng-ASCE. 106 (9), 1013e35(1980).
- [2] E. Hoek, E.T. Brown, The Hoek-Brown failure criterion – an 1988 update. Proceedings of the 15th Canadian Rock Mechanics Symposium, Civil Engineering Department, University of Toronto, Toronto 1988, 31-38 (1988).
- [3] E. Hoek, P.K. Kaiser, W.F. Bawden, Support of underground excavation in hard rock. Balkema, Rotterdam (1995).
- [4] K .J. Douglas, The shear strength of rock masses. PhD Thesis, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, (2002). DOI : https://doi.org/10.26190/unsworks/21014.
- [5] P. Małkowski, Ł. Ostrowski, Convergence Monitoring as a Basis for Numerical Analysis of Changes of Rock-Mass Quality and Hoek-Brown Failure Criterion Parameters Due to Longwall Excavation. Arch. Min. Sci. 68 (1), 93-118(2019). DOI : https://doi.org/10.24425/ams.2019.126274.
- [6] J. Zenah, P. Görög, The effect of GSI and mi on the stability of 3D Twin tunnel in limestone. Period. Polytech. Civ.Eng. 68 (2), 600-607 (2024). DOI : https://doi.org/10.3311/PPci.22239.
- [7] M.C. Villeneuve, M.J. Heap, L.N. Schaefer, Defining the Hoek-Brown Constant mi for Volcanic Lithologies. In: Ito, Ohta and Osada (Eds), Specialized Conference Engineering Geology in Volcanic Fields (RMEGV 2021), September 9-11, 2021, Fukuoka, Japan, 261-268.
- [8] E. Hoek, C.D. Martin, Fracture initiation and propagation in intact rock: A review. J. Rock Mech. Geotech. Eng.6, 287-300 (2014). DOI : http://dx.doi.org/10.1016/j.jrmge.2014.06.001.
- [9] A.A. Griffith, The phenomena of rupture and flow in solids. The Philosophical Transactions of the Royal Society London, Series A, 221, 63e98 (1921).
- [10] M.S. Paterson, T.F. Wong, Experimental rock deformation – the brittle field. 2nd ed. New York: Springer-Verlag(2005).
- [11] H. Saroglou, G. Tsiambaos, A modified Hoek–Brown failure criterion for anisotropic intact rock. Int. J. RockMech. Min. Sci. 45, 223-234 (2008). DOI : doi:10.1016/j.ijrmms.2007.05.004.
- [12] E. Hoek, Practical rock engineering. New version. Hoek’s Corner, https://www.rocscience.com/learning/hoekscorner(accessed: 2023-10-21).
- [13] S.M. Davarpanah, M. Sharghi, B. Vásárhelyi, A. Tӧrӧk, Characterization of Hoek-Brown constant mi of quasi isotropic intact rock using rigidity index approach. Acta Geotech. 17, 877-902 (2023).DOI : https://doi.org/10.1007/s11440-021-01229-2.
- [14] J.P. Zuo, H.T. Li, H.P. Xie, Y. Ju, S.P. Peng, A nonlinear strength criterion for rock-like materials based on fracture mechanics. Int. J. Rock Mech. Min. Sci. 45 (4), 594-599 (2008). DOI : https://doi.org/10.1016/j.ijrmms.2007.05.010.
- [15] E. Hoek, Practical rock engineering. Hoek’s Corner. https://www.rocscience.com/learning/hoeks-corner (accessed:2007-03-15).
- [16] M. Sari, A simple approximation to estimate the Hoek-Brown parameter ‘mi’ for intact rocks. In: Zhao, Labiouse,Dudt & Mathier (eds.), Rock mechanics in civil and environmental engineering, Taylor & Francis Group, London(2010).
- [17] E .A. Aladejare, Y. Wang, Probabilistic characterization of Hoek-Brown constant mi of rock using Hoek’s guidelinechart, regression model and uniaxial compression test. Geotech. Geol. Eng. 37, 5045-5060 (2019).DOI : https://doi.org/10.1007/s10706-019-00961-7.
- [18] J. Shen, M. Karakus, Simplified method for estimating the Hoek-Brown constant for intact rocks. J. Geotech. Geoenviron. Eng. 140 (6), (2014). DOI : https://doi.org/10.1061/(ASCE )GT .1943-5606.0001116.
- [19] B . Vásárhelyi, L. Kovács, A. Török, Analysing the modified Hoek–Brown failure criteria using Hungarian granitic rocks. Geomech. Geophys. Geo-Energ. Geo-Resour. 2, 131-136 (2016).DOI : https://doi.org/10.1007/s40948-016-0021-7.
- [20] W . Wang, J. Shen, Comparison of existing methods and a new tensile strength based model in estimating the Hoek-Brown constant mi for intact rocks. Eng. Geol. 224, 87-96 (2017).DOI : http://dx.doi.org/10.1016/j.enggeo.2017.05.008.
- [21] S. Arshadnejad, Determination of “mi” in the Hoek-Brown failure criterion of rock. Min. Sci. 25, 111-127 (2018).DOI : https://doi.org/10.5277/msc182509.
- [22] G. Mostyn, K. Douglas, Strength Of Intact Rock And Rock Masses. ISR M International Symposium, Melbourne, Australia, November 2000. Paper Number: ISRM-IS-2000-034 (2000).
- [23] L. Tai, C. Li, S. Gu, X. Yu, Z. Xu, L. Sun, Research on dynamic response characteristics of normal fault footwall working face and rock burst prevention technology under the influence of the gob area. Sci. Rep. 13, Articlenumber: 18676 (2023).
- [24] R .O. Dychkovskyi, V.H Lozynskyi, P.B. Saik, M.V. Petlovanyi, Y.Z. Malanchuk, Z.R. Malanchuk, Modeling of the disjunctive geological fault influence on the exploitation wells stability during underground coal gasification. Arch. of Civil. and Mech. Eng. 18 (4), 1183-1197 (2018). DOI : https://doi.org/10.1016/j.acme.2018.01.012.
- [25] G.M. Molinda, Geologic Hazards and Roof Stability in Coal Mines. National Institute for Occupational Safetyand Health, Pittsburgh Research Laboratory, Information Circular 9466 (2003).
- [26] T.G. Carter, V. Marinos, Putting geological focus back into rock engineering design. Rock Mech. Rock Eng. 53,4487-4508 (2020). DOI : https://doi.org/10.1007/s00603-020-02177-1.
- [27] L .R. Richards, S.A.L. Read, A comparison of methods for determining mi, the Hoek-Brown parameter for intactrock material. Proceedings of 45th US Rock Mechanics/Geomechanics Symposium, San Francisco, CA, June26-29 2011, ARMA, 11-246 (2011).
- [28] N. Barton, Shear strength criteria for rock, rock joints, rockfill and rock masses: Problems and some solutions.J. Rock Mech. Geotech. Eng. 5, 249-261 (2013). DOI : http://dx.doi.org/10.1016/j.jrmge.2013.05.008.
- [29] D.C. Wyllie, N.I. Norrish, Rock strength properties and their measurement. In: Landslides: Investigation andmitigation, Chapter 14, Transportation Research Board Special Report, Issue Number 247 (1996).
- [30] P. Małkowski, Behaviour of joints in sandstones during the shear test. Acta Geodyn. Geomater. 12 (4), 399-410(2015). DOI : https://doi.org/10.13168/AGG .2015.0034.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c92ca87e-e6a9-428a-bf0b-832168cd14ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.