Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, various repowering methods commonly employed in practice today are discussed. A particular emphasis is put on the hot wind-box repowering method, which is examined in greater detail. This method stands out for its simpler solution and lower investment costs compared to other repowering methods. Most research and analyses on repowering, taking into account the ecological problems and the possibilities of repowering existing old steam cycle power plants, have focused on the effect of repowering on thermodynamic parameters and emission reduction․ However, there are still many important questions that remain open and unexplored when it comes to analyze the selection of the right technology of the repowering and the right gas turbine for such a combined cycle power plant. For that purpose, based on the oxygen fraction in the gas turbine exhaust gases, nine different gas turbine models were tested for a 200 MW steam cycle power plant model. Calculations were carried out using the GateCycle modelling program. As a result of investigations, a GE Energy Oil & Gas MS9001E SC (GTW 2009 ‒ with 123 MW power) gas turbine was selected as the best one for such a combination, in which case the increase of total net power output by 97.69% and the improvement of efficiency by 6.67% were registered, compared to the results before repowering, while carbon dioxide emissions were decreased by 0.29% per megawatt electrical power generated. The conducted research underscores the importance of selecting the right gas turbine for such a gas-steam system.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
99--106
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
- Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology
autor
- Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology
autor
- Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology
Bibliografia
- [1] https://www.iea.org/ [accessed 7 June 2023].
- [2] Monjardino, J., Dias, L., Fortes, P., Tente, H., Ferreira, F., & Seixas, J. (2021). Carbon neutrality pathways effects on air pollutant emissions: The Portuguese case. Atmosphere, 12(3),324. doi: 10.3390/atmos12030324
- [3] Țibulcă, I. (2021). Reducing air pollution: Are environmental taxes enough to help the EU member states reach climate neutrality by 2050. Polish Journal of Environmental Studies, 30(5), 4205‒4218. doi: 10.15244/pjoes/132621
- [4] Ciesielska-Maciągowska, D., Klimczak, D., & Skrzek-Lubasińska, M. (2021). Central and Eastern European CO2 market – Challenges of emissions trading for energy companies. Energies, 14(4), 1051. doi: 10.3390/en14041051
- [5] Jiang, C., & Yue, Y. (2021). Sensitivity analysis of key factors influencing carbon prices under the EU ETS. Polish Journal of Environmental Studies, 30(4), 3645‒3658. doi: 10.15244/pjoes/131083
- [6] Kefford, B. M., Ballinger, B., Schmeda-Lopez, D. R., Greig, C., & Smart, S. (2018). The early retirement challenge for fossil fuel power plants in deep decarbonisation scenarios. Energy Policy,119, 294‒306. doi: 10.1016/j.enpol.2018.04.018
- [7] Koch, K., & Alt, B. M. (2020). Dynamic Modeling of a Decarbonized District Heating System with CHP Plants in Electricity-Based Mode of Operation. Energies, 13(16), 4134. doi: 10.3390/en13164134
- [8] Hamels, S. (2021). CO2 intensities and primary energy factors in the future European electricity system. Energies, 14(8), 2165. doi: 10.3390/en14082165
- [9] Günther, M., Greller, M., & Fallahnejad, M. (2014). Evaluation of long-term scenarios for power generation and district heating at Stadtwerke München. Informatik Spektrum, 38(2), 97‒102.doi: 10.1007/s00287-014-0852-y
- [10] Skoczkowski, T., Bielecki, S., Węglarz, A., Włodarczak, M., & Gutowski, P. (2018). Impact assessment of climate policy on Poland’s power sector. Mitigation and Adaptation Strategies for Global Change, 23(8), 1303‒1349. doi: 10.1007/s11027-018-9786-z
- [11] Ravina, M., Panepinto, D., Zanetti, M., & Genon, G. (2017). Environmental analysis of a potential district heating network powered by a large-scale cogeneration plant. Environmental Science and Pollution Research, 24(15), 13424‒13436 doi:10.1007/s11356-017-8863-2.
- [12] Křůmal, K., Mikuška, P., Horák, J., Hopan, F., & Krpec, K. (2019). Comparison of emissions of gaseous and particulate pollutants from the combustion of biomass and coal in modern and old-type boilers used for residential heating in the Czech Republic, Central Europe. Chemosphere, 229, 51‒59. doi:10.1016/j.chemosphere.2019.04.137
- [13] Rokni, M. (2016). Performance comparison on repowering of a steam power plant with gas turbines and solid oxide fuel cells. Energies, 9(6), 399. doi: 10.3390/en9060399
- [14] Wang, J., You, S., Zong, Y., Træholt, C., Dong, Z.Y., & Zhou, Y. (2019). Flexibility of combined heat and power plants: A review of technologies and operation strategies. Applied Energy, 252, 113445. doi: 10.1016/j.apenergy.2019.113445
- [15] Stoll, H.G., Smith, R.W., & Tomlinson, L.O. (1996). Performance and Economic Considerations of Repowering Steam Power Plants. Schenectady, New York.
- [16] Kehlhofer, R., Rukes, B., Hannemann, F., & Stirnimann, F. (2009). Combined-Cycle Gas & Steam Turbine Power Plants (3rd Edn.). Pennwell Corp., Tulsa, Oklahoma.
- [17] Kondrateva, O.E., Roslyakov, P.V., Skobelev, D.O., Guseva, T.V., Loktionov, O.A., & Åke, M. (2019). Developing the cost estimation technique when switching to best available power technologies. Thermal Engineering, 66(7), 513‒520.
- [18] Wang, W., Li, Z., Lyu, J., Zhang, H., Yue, G., & Ni, W. (2019). An overview of the development history and technical progress of China’s coal-fired power industry. Frontiers in Energy, 13(3), 417‒426. doi: 10.1007/s11708-019-0614-2
- [19] Wołowicz, M., Milewski, J., & Badyda, K. (2012). Feedwater repowering of 800 MW supercritical power plant. Journal of Power Technologies, 2, 127‒134.
- [20] Badyda, K., & Miller, A. (2014). Energy gas turbines and systems utilizing them. Kaprint, Lublin ( in Polish).
- [21] Harutyunyan, A., Badyda, K., Wołowicz, M., & Milewski, J. (2019). Gas turbine selection for hot windbox repowering on 200 MW fossil fuel power plant. Journal of Power Technologies,99(2), 142‒151.
- [22] Yilmazoglu, M.Z., & Durmaz, A. (2013). Hot windbox repowering of coal-fired thermal power plants. Turkish Journal of Engineering and Environmental Sciences, 37, 33–41. doi:10.3906/muh-1203-3
- [23] Kehlhofer, R. (1997). Combined-Cycle Gas and Steam Turbine Power Plants. Tulsa, Oklahoma.
- [24] Fränkle, M. (2006). SRS : The standardized repowering solution for 300MW steam power plants in Russia. Siemens Power Generation (PG).
- [25] Harutyunyan, A. (2021). Analyses of Thermodynamic Parameters of Gas Turbines and Combined Cycle Power Plants after Repowering Working High Above Sea Level. PhD thesis, Warsaw University of Technology.
- [26] Stenzel, C., Sopocy Dale, M., & Stanley Pace, E. (1999). Repowering Existing Fossil Steam Plants. SEPRIL – General Power Solutions. http://www.coal2nuclear.com/MSR%20-%20Repowering%20Existing%20Fossil%20Steam%20Plants%20-%20SEPRIL%20.pdf [accessed 7 June 2023].
- [27] Ploumen, P.J., & Veenema, J.J. (1996). Dutch experience with hot windbox repowering. International Gas Turbine and Aeroengine Congress and Exhibition, 10–13 June, Birmingham, Birmingham, UK. ASME, GT-250. CorpusID:110395957
- [28] Kudlu, N. (1989). Major options and considerations for repowering with gas turbines: Final report. EPRI-GS-6156.
- [29] Moore, T. (1995). Repowering as a competitive strategy. EPRI Journal, 20, 6–13. CorpusID:111903600
- [30] Walters, A.B. (1995). Power plant topping cycle repowering. Energy Engineering, 92(5), 49‒71. CorpusID:107521592
- [31] Pace, S., & Walters, A. (1996). Repowering fossil steam power plants with combustion turbine-based technologies. International Gas Turbine and Aeroengine Congress and Exhibition, 10–13 June, Birmingham, Birmingham, UK. doi: 10.1115/96-GT-020
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c92be324-e610-48dc-8660-ed003613079c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.