Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Quantum cascade laser is one of the most sophisticated semiconductor devices. The active region of the quantum cascade laser consists of hundreds thin layers, thus the deposition precision is the most crucial. The main technique for the fabrication of quantum cascade laser structure is molecular beam epitaxy, however, the prevalence of metalorganic vapour phase epitaxy techniques in the fabrication of semiconductor structures causes a perpetual work on the improvement production of the entire quantum cascade laser structure by the metalorganic vapour phase epitaxy. The paper presents technological aspects connected with the metalorganic vapour phase epitaxy growth of InGaAs/AlInAs low-dimensional structures for quantum cascade laser active region emitting ~9.6 μm radiation. Epitaxial growth of superlattice made of InGaAs/AlInAs lattice matched to InP was conducted at the AIXTRON 3x2″ FT system. Optical and structural properties of such heterostructures were characterised by means of high resolution X-ray diffraction, photoluminescence, contactless electroreflectance and scanning electron microscope techniques. Epitaxial growth and possible solutions of structure improvements are discussed.
Czasopismo
Rocznik
Tom
Strony
241--248
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-372, Wrocław, Poland
autor
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-372, Wrocław, Poland
autor
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-372, Wrocław, Poland
autor
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-372, Wrocław, Poland
autor
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-372, Wrocław, Poland
autor
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-372, Wrocław, Poland
autor
- Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
autor
- Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
autor
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, Janiszewskiego 11/17, 50-372, Wrocław, Poland
Bibliografia
- [1] GMACHL C., CAPASSO F., SIVCO D.L., CHO A.Y., Recent progress in quantum cascade lasers and applications, Reports on Progress in Physics 64(11), 2001, pp. 1533–1601.
- [2] FAIST J., CAPASSO F., SIVCO D.L., SIRTORI C., HUTCHINSON A.L., CHO A.Y., Quantum cascade laser, Science 264(5158), 1994, pp. 553–556.
- [3] BUGAJSKI M., GUTOWSKI P., KARBOWNIK P., KOLEK A., HAŁDAŚ G., PIERŚCIŃSKI K., PIERŚCIŃSKA D., KUBACKA-TRACZYK J., SANKOWSKA I., TRAJNEROWICZ A., KOSIEL K., SZERLING A., GRZONKA J., KURZYDŁOWSKI K., SLIGHT T., MEREDITH W., Mid-IR quantum cascade lasers: device technology and non-equilibrium Green’s function modeling of electro-optical characteristics, Physica Status Solidi (B) 251(6), 2014, pp. 1144–1157.
- [4] NAKANO T., SHIODA T., SUGIYAMA M., NAKANO Y., SHIMOGAKI Y., Competitive kinetics model to explain surface segregation of indium during InGaP growth by using metal organic vapor phase epitaxy, Japanese Journal of Applied Physics 48(1R), 2009, article 011101.
- [5] SOZYKIN A.S., STRELCHENKO S.S., PROKOLKIN E.V., LADUGIN M.A., Thermodynamics and kinetics of indium segregation in InGaAs/GaAs heterostructures grown by MOCVD, Journal of Crystal Growth 363, 2013, pp. 253–257.
- [6] MARMALYUK A.A., GOVORKOV O.I., PETROVSKY A.V., NIKITIN D.B., PADALITSA A.A., BULAEV P.V., BUDKIN I.V., ZALEVSKY I.D., Investigation of indium segregation in InGaAs/(Al)GaAs quantum wells grown by MOCVD, Journal of Crystal Growth 237–239, 2002, pp. 264–268.
- [7] KARPOV S.YU., MAKAROV YU.N., Indium segregation kinetics in InGaAs ternary compounds, Thin Solid Films 380(1–2), 2000, pp. 71–74.
- [8] PUCICKI D., BIELAK K., ŚCIANA B., RADZIEWICZ D., LATKOWSKA-BARANOWSKA M., KOVÁČ J., VINCZE A., TŁACZAŁA M., Determination of composition of non-homogeneous GaInNAs layers, Journal of Crystal Growth 433, 2016, pp. 105–113.
- [9] BUGGE F., BEISTER G., ERBERT G., GRAMLICH S., RECHENBERG I., TREPTOW H., WEYERS M., Effect of growth interruption on performance of AlGaAs/InGaAs/GaAs quantum well lasers, Journal of Crystal Growth 145(1–4), 1994, pp. 907–910.
- [10] YONG HUANG, JAE-HYUN RYOU, DUPUIS R.D., PFLÜGL C., CAPASSO F., KEWEI SUN, FISCHER A.M., PONCE F.A., Optimization of growth conditions for InGaAs/InAlAs/InP quantum cascade lasers by metalorganic chemical vapor deposition, Journal of Crystal Growth 316(1), 2011, pp. 75–80.
- [11] JASIK A., WNUK A., GACA J., WÓJCIK M., WÓJCIK-JEDLIŃSKA A., MUSZALSKI J., STRUPIŃSKI W., The influence of the growth rate and V/III ratio on the crystal quality of InGaAs/GaAs QW structures grown by MBE and MOCVD methods, Journal of Crystal Growth 311(19), 2009, pp. 4423–4432.
- [12] VURGAFTMAN I., MEYER J.R., RAM-MOHAN L.R., Band parameters for III-V compound semiconductors and their alloys, Journal of Applied Physics 89(11), 2001, p. 5815.
- [13] KUDRAWIEC R., KOPACZEK J., POLAK M.P., SCHAROCH P., GLADYSIEWICZ M., MISIEWICZ J., RICHARDS R.D., BASTIMAN F., DAVID J.P.R., Experimental and theoretical studies of band gap alignment in GaAs1–xBix / GaAs quantum wells, Journal of Applied Physics 116(23), 2014, article 233508.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c92b6b6b-79b1-4f15-804b-ee00a2715234