PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vegetation of Abandoned Fields on Soil Types of Kastanozems in Northern Kazakhstan (Kostanay Region)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study provides original data on the impact of human activity on vegetation under the specific conditions of the Kastanozem from the Kostanay region (northern Kazakhstan). Radical changes in land use are provoking deposition in vegetation. The question remains whether natural vegetation will return or whether a different type of vegetation will be created under the specific conditions of the Kastanozems soils. The evaluation of vegetation took place in the fields that were abandoned in different time horizons. Height, cover, biomass weight and species composition of vegetation were monitored. The vegetation of abandoned fields is characterized by low species diversity. Succession runs from annual species to a stage where perennial dicotyledonous species with a deep root system dominate. Spontaneous vegetation leaves a sufficient amount of biomass on the soil surface, which assumes that the land will be protected from undesirable phenomena such as erosion and desertification processes.
Rocznik
Strony
176--184
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • Department of Soil sciences and agro chemistry, Non-profit Corporation Kazakh National Agrarian University, Abay 8, 050010, Almaty, Kazakhstan
  • Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
  • Department of Soil sciences and agro chemistry, Non-profit Corporation Kazakh National Agrarian University, Abay 8, 050010, Almaty, Kazakhstan
autor
  • Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
Bibliografia
  • 1. Aksoy E., Özsoy G., Karaata E.U., Boyraz D. 2018. Kastanozems. In: Kapur S., Akça E., Günal H. (eds). The Soils of Turkey. World Soils Book Series. Springer, Cham.
  • 2. Anonym. 2016. Summary analytical report on the state and use of lands of the Republic of Kazakhstan for 2015. Ministry of Agriculture of the Republic of Kazakhstan, Astana. (in Russian).
  • 3. Barrow C.J. 1991. Land Degradation. Cambridge University Press, Cambridge.
  • 4. Bonet A. 2004. Secondary succession of semi-arid Mediterranean old-fields in south-eastern Spain: insights for conservation and restoration of degraded lands. J. Arid Environ, 56(2), 213–233.
  • 5. Cremene C., Groza G., Rakosy L., Schileyko A.A., Baur A., Erhardt A., Baur B. 2005. Alterations of steppe-like grasslands in Eastern Europe: a threat to regionalbiodiversity hotspots. Conservation Biology, 19, 1606–1618.
  • 6. Davidson E.A., Carvalho C.J.R., Figueira A.M., Ishida F.Y., Ometto J.P.H., Nardoto G.B., Sab ́a R.T., Hayashi S.N., Leal E.C., Guimar ̃ aes Vieira I.C., Martinelli L.A. 2007. Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature, 447, 995–998.
  • 7. Dı́az-Zorita M., Duarte G.A., Grove J.H. 2002. A review of no-till systems and soil management for sustainable crop production in the subhumid and semiarid Pampas of Argentina. Soil and Tillage Research, 65(1), 1–18.
  • 8. Dudiak N.V., Pichura V.I., Potravka L.A., Stroganov A.A. 2020. Spatial Modeling of the Effects of Deflation Destruction of the Steppe Soils of Ukraine. Journal of Ecological Engineering, 21(2), 166–177.
  • 9. Eckstein R.L. & Donath T.W. 2005. Interactions between litter and water availability affect seedling emergence in four familial pairs of floodplain species. Journal of Ecology, 93, 807–816.
  • 10. Enyedi Z.M., Ruprecht E., Deák M. 2008. Long-term effects of the abandonment of grazing on steppe-like grasslands. Applied Vegetation Science, 11, 53–60.
  • 11. Espolov T.I. 2002. The effectiveness of the agri-food complex of Kazakhstan. Agricultural University. Almaty.
  • 12. Fleskens L., Stringer L.C. 2014. Land management and policy responses to mitigate desertification and land degradation. Land Degrad, 25(12), 1–4.
  • 13. Fowler N.L. 1986. Microsite requirements for germination and establishment of three grass species. American Midland Naturalist, 115, 131–145.
  • 14. Frühauf M., Meinel T., Schmidt G. 2020. The Virgin Lands Campaign (1954–1963) Until the Breakdown of the Former Soviet Union (FSU): With Special Focus on Western Siberia. In: Frühauf M., Guggenberger G., Meinel T., Theesfeld I., Lentz S. (Eds.). Kulunda: Climate Smart Agriculture, Innovations in Landscape Research. Springer International Publishing, 101–118.
  • 15. Hamrick J.L. & Lee J.M. 1987. Effect of soil surface topography and litter cover on the germination, survival, and growth of musk thistle (Carduus nutans). American Journal of Botany, 74, 451–457.
  • 16. Han Q., Luo G., Li C., Shakir A., Wu M., Saidov A. 2016. Simulated grazing effects on carbon emission in Central Asia. Agricult. Forest Meteorol, 216, 203–214.
  • 17. Hu Y., Hana Y., Zhanga Y. 2020. Land desertification and its influencing factors in Kazakhstan. Journal of Arid Environments, 180, 104–203.
  • 18. IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports, FAO, Rome, 106.
  • 19. Jiang J.P., Xiong Y.C., Jiang H.M., Ye D.Y., Song Y.J., Li F.M. 2009. Soil Microbial Activity During Secondary Vegetation Succession in Semiarid Abandoned Lands of Loess Plateau. Pedosphere, 19(6), 735–747.
  • 20. Kalinichenko V.P. 2015. Creation of the Botanical Gardens Soil Improvement, Nutrition and Irrigation System Based on the Biogeosystem Technique methodology. The Role of Botanic Gardens in the Conservation and Monitoring of Biodiversity. The Collection of Materials of the International Scientific Conference Devoted to the 100th Anniversary of the Southern Federal University. 27–30 May 2015 Rostov on Don. Southern Federal University Publishing House, 50–54.
  • 21. Kalinitchenko V.P., Glinushkin A.P., Sharshak V.K., Ladan E.P., Minkina T.M., Sushkova S.N., Mandzhieva S.S., Batukaev A.A., Chernenko V.V., Ilyina L.P., Kosolapov V.M., Barbashev A.I., Antonenko E.M. 2021a. Intra-Soil Milling for Stable Evolution and High Productivity of Kastanozem Soil. Processes, 9, 1302.
  • 22. Kalinitchenko V.P., Glinushkin A.P., Swidsinski A.V., Minkina T.M., Andreev A.G., Mandzhieva S.S., Sushkova S.N., Makarenkov D.A., Ilyina L.P., Chernenko V.V., Zamulina I.V., Larin G.S., Zavalin A.A., Gudkov S.V. 2021b. Thermodynamic mathematical model of the Kastanozem complex and new principles of sustainable semiarid protective silviculture management. Environmental Research, 194, 110605.
  • 23. Kanchikerimath M. & Singh D. 2001. Soil organic matter and biological properties after 26 years of maize-wheat-cowpea cropping as affected by manure and fertilization in a Cambisol in semiarid region of India. Agric. Ecosyst. Environ., 86(2), 155–162.
  • 24. Kazangapova N.B., Abeuova S.M., Romanova S.M., Satova K.M. 2017. Soils of the Karagandy forest nursery: The basis of environmental and aesthetic landscapevalue of the region. News of the National Academy of Sciences of the Republic of Kazakhstan. Series of Geology and Technical Sciences, 6(426), 150–156.
  • 25. Kirichenko-Babko M., Danko Y., Franus M., Stępniewski W. 2020. Effect of Soil Moisture on the Epigeic Arthropods Diversity in Steppe Landscape. J. Ecol. Eng., 21(5), 137–147.
  • 26. Klatka S. 2020. Soil Productivity Index in the Selected Area of Post-Mining Geomechanical Deformations. Journal of Ecological Engineering, 21(5), 148–154.
  • 27. Klein I., Gessner U., Kuenzer C. 2012. Regional land cover mapping and change detection in Central Asia using MODIS time-series. Appl. Geogr., 35, 219–234.
  • 28. Kouba Y., Gartzia M., El Aich A., Alados C.L. 2018. Deserts do not advance, they are created: Land degradation and desertification in semiarid environments in the Middle Atlas, Morocco. Journal of Arid Environments, 158, 1–8.
  • 29. Kučera J., Podhrázská J., Karásek P., Papaj V. 2020. The Effect of Windbreak Parameters on the Wind Erosion Risk Assessment in Agricultural Landscape. Journal of Ecological Engineering, 21(2), 150–156.
  • 30. Lashchinsky N.N., Tishenko M.P., Korolyuk A. 2019. Quantitative analysis of local cenoflora of the steppe zone of Northern Kazakhstan. Bulletin of Tomsk state University. Biology, 45, 69–90.
  • 31. Li H.B., Han X.Z., Qiao Y., Hou X.Y., Xing B.S. 2009. Carbon dioxide emission from black soil as influenced by land-use change and long-term fertilization. Commun. Soil Sci. Plant Anal., 40, 1350–1368.
  • 32. Li J., Ma X., Zhang C. 2020. Predicting the spatiotemporal variation in soil wind erosion across Central Asia in response to climate change in the 21st century. Science of the Total Environment, 709, 136060.
  • 33. López-Vicente M., Lana-Renault N., García-Ruiz J.M. 2011. Assessing the potential effect of different land cover management practices on sediment yield from an abandoned farmland catchment in the Spanish Pyrenees. J. Soils Sediments, 11, 1440–1455.
  • 34. Nyussupova G.N., Tokbergenova А.А., Kairova S.G., Arslan M. 2015. Mechanisms of the formation of ecologically-oriented agricultural land use in Kazakhstan. Oxidation Communications, 38(2), 886–899.
  • 35. Pimentel D., Harvey C., Resosudarmo P., Sinclair K., Kurz D., McNair M., Crist S., Shpritz L., Fitton L., Saffouri R., Blair R. 1995. Environmental and economic costs of soil erosion and conservation benefits. Science, 267, 1117–1123.
  • 36. Prishchepov A.V., Schierhorn F., Dronin N., Ponkina E.V., Müller D. 2020. 800 Years of Agricultural Land-use Change in Asian (Eastern) Russia. In: Frühauf M., Guggenberger G., Meinel T., Theesfeld I., Lentz S. (Eds.) Kulunda: Climate Smart Agriculture, Innovations in Landscape Research. Springer International Publishing, 67–87.
  • 37. Qin C., Tang Y., Chen J., Chen X. 2020. The impact of soil and water resource conservation on agricultural production: an analysis of the agricultural production performance in Zhejiang, China. Agricultural Water Management, 240, 106268.
  • 38. Rachkovskaya E.I. & Bragina T.M. 2012. Steppes of Kazakhstan: Diversity and Present State. In: Werger MJA., van Staalduinen MA. (Eds.). Eurasian Steppes. Ecological Problems and Livelihoods in a Changing World, Plant and Vegetation. Springer, Netherlands, Dordrecht, 103–148.
  • 39. Richard T.C., Keith P., Edward T.E., 2001. Grassland management and conversion into grassland: effects on soil carbon. Ecol. Appl, 11(2), 343–355.
  • 40. Rotundo J.L. & Aguiar M.R. 2005. Litter effects on plant regeneration in arid lands: acomplex balance between seed retention, seed longevity and soil-seed contact. Journal of Ecology, 93, 829–838.
  • 41. Schwieger D.A.M. & Mbidzo M. 2020. Socio-historical and structural factors linked to land degradation and desertification in Namibia’s former Herero ‘homelands’. Journal of Arid Environments, 178, 104151.
  • 42. Sharratt B.S., Vaddella V.K., Feng G. 2013. Threshold friction velocity influenced by wetness of soils within the Columbia Plateau. Aeolian Res., 9, 175–182.
  • 43. Shen Y., Zhang C., Wang X., Zou X., Kang L. 2018. Statistical characteristics of wind erosion events in the erosion area of Northern China. CATENA, 167, 399–410.
  • 44. Shevyrnogov A.P., Shpedt A.A., Larko A.A., Botvich I.Y., Emelyanov D.V., Pisman T.I. 2019. Identification of unused agricultural lands (deposits and fields under steam) by ground-based spectrometric data. Regional systems for integrated remote sensing of agrolandscapes. Materials of 2 All-Russian scientific and practical seminar. Krasnoyarsk.
  • 45. Tamura K., Asano M., Jamsran U. 2013. Soil Diversity in Mongolia. In: Yamamura N., Fujita N., Maekawa A. (eds). The Mongolian Ecosystem Network. Ecological Research Monographs. Springer, Tokyo.
  • 46. Uspanov U.U., Yevstifeyev U.G., Storozhenko D.M., Lobova E.V. 1975. Soil Map of the Kazakh SSR 1:2.500.000. Kazakh SSR. Ałma-Ata. (in Russian)
  • 47. Vesterdal L., Ritter E., Gundersen P. 2002. Change in soil organic carbon following afforestation of former arable land. For. Ecol. Manage., 169, 137–143.
  • 48. Wang Z.Y., Hou J., Qu Z.Q., Guo J.Y., Li J.R. 2017. Root distribution of 430 plants in temperate grassland of northern china. Applied Ecology Andenvironmental Research, 15(3), 1625–1651.
  • 49. Wijitkosum S. 2021. Factor influencing land degradation sensitivity and desertification in a drought prone watershed in Thailand. International Soil and Water Conservation Research, 9(2), 217–228.
  • 50. Xi X. & Sokolik I.N. 2016. Quantifying the anthropogenic dust emission from agricultural land use and desiccation of the Aral Sea in Central Asia. J. Geophys. Res. Atmos., 121, 270–281.
  • 51. Zhang H., Peng J., Zhao C., Xu Y., Dong J., Gao Y. 2021. Wind speed in spring dominated the decrease in wind erosion across the Horqin Sandy Land in northern China. Ecological Indicators, 127, 107599.
  • 52. Zhou Y., Zhang L., Fensholt R., Wang K., Vitkovskaya I., Tian F. 2015b. Climate Contributions to Vegetation Variations in Central Asian Drylands: Pre- and Post-USSR Collapse. Rem. Sens., 7, 2449–2470.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c91f6db5-db8d-412f-91cf-4c2880b0fc5d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.