Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The objective of this work is to gain a deeper understanding of the separation effects and particle movement during filtration of non-metallic inclusions in aluminum casting on a macroscopic level. To understand particle movement, complex simulations are performed using Flow 3D. One focus is the influence of the filter position in the casting system with regard to filtration efficiency. For this purpose, a real filter geometry is scanned with computed tomography (CT) and integrated into the simulation as an STL file. This allows the filtration processes of particles to be represented as realistically as possible. The models provide a look inside the casting system and the flow conditions before, in, and after the filter, which cannot be mapped in real casting tests. In the second part of this work, the casting models used in the simulation are replicated and cast in real casting trials. In order to gain further knowledge about filtration and particle movement, non-metallic particles are added to the melt and then separated by a filter. These particles are then detected in the filter by metallographic analysis. The numerical simulations of particle movement in an aluminum melt during filtration, give predictions in reasonable agreement with experimental measurements.
Czasopismo
Rocznik
Tom
Strony
70--80
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
- Foundry Institute, Technische Universität Bergakademie Freiberg, Germany
autor
- Foundry Institute, Technische Universität Bergakademie Freiberg, Germany
autor
- Foundry Institute, Technische Universität Bergakademie Freiberg, Germany
autor
- Foundry Institute, Technische Universität Bergakademie Freiberg, Germany
autor
- Foundry Institute, Technische Universität Bergakademie Freiberg, Germany
autor
- Simcast GmbH, Westring 401, Wuppertal, Germany
Bibliografia
- [1] Hasse, S. (2008). Foundry lexicon. Berlin: Fachverlag Schiele & Schön GmbH. (in German).
- [2] Waz, E., Bansal, A., Chapelle, P., Delannoy, Y., Bellot, J.P. & Le Brun P. (2016). Modeling of inclusion behavior in an aluminum induction furnace. In Williams E. (Eds.) Light Metals 2016 (pp. 849-854). Springer, Cham. https://doi.org/10.1007/978-3-319-48251-4_144.
- [3] Kroll-Rabotin, J.-S., Gisselbrecht, M., Ott, B., May, R., Fröhlich, J. & Bellot, J.-P. (2020). Multiscale simulation of non-metallic inclusion aggregation in a fully resolved bubble swarm in liquid steel. Metals, 10(4), 517. https://doi.org/10.3390/met10040517.
- [4] Żak, P. L., Kalisz, D., Lelito, J., Szucki, M., Gracz, B. & Suchy, J. S. (2015). Modelling of non-metallic particles motion process in foundry alloys. Metalurgija. 54(2), 357-360.
- [5] Szucki, M., Kalisz, D., Lelito, J., Żak, P. L., Suchy, J. S. & Krajewski, W. K. (2015). Modelling of the crystallization front – particles interactions in ZnAl/(SiC)p composites. Metalurgija. 54(2), 375-378.
- [6] Lelito, J., Żak, P. L., Greer, A. L., Suchy, J. S., Krajewski, W. K., Gracz, B., Szucki, M. & Shirzadi, A. A. (2012). Crystallization model of magnesium primary phase in the AZ91/Sic composite. Composites. Part B, Engineering. 43(8), 3306-3309.
- [7] Jäckel, E. (2019). Influence of filter structure and casting system on the filtration efficiency in Aluminum Mold Casting. Unpublished doctoral dissertation, Technische Universität Bergakademie Freiberg. (in German).
- [8] Barkhudarov, M.R., Hirt, C. W. (1998). Tracking defects. Flow Science, Inc. Retrieved May 26, 2021, from https://www.flow3d.com/wp-content/uploads/2014/08/Tracking-Defects.pdf.
- [9] Zadeh, A. & Campbell, J. (2003). Metal flow through a filter system. AFS Transaction. 02-020, 1-17.
- [10] Gebelin, J. & Jolly, M. (2002). Modelling filters in light alloy casting processes (or "What really happens when aluminium flows through a filter"). AFS Transaction. 110, 109-119.
- [11] Acosta, G.F.A. & Castillejos, E.A.H. (2000). A mathematical model of aluminum depth filtration with ceramic foam filters: Part I. Validation for short-term filtration. Metallurgical and Materials Transactions B. 31, 491-502. DOI: 10.1007/s11663-000-0155-3.
- [12] Acosta, G.F.A. & Castillejos, E.A.H. (2000). A mathematical model of aluminum depth filtration with ceramic foam filters: Part II. Application to long-term filtration. Metallurgical and Materials Transactions B. 31, 503-514. DOI: 10.1007/s11663-000-0156-2.
- [13] Acosta, G.F.A., Castillejos, E.A.H., Almanza, R.J.M. & Flores, V.A. (1995). Analysis of liquid flow through ceramic porous media used for molten metal filtration. Metallurgical and Materials Transactions B. 26, 159-171. DOI: 10.1007/BF02648988.
- [14] Werzner, E., Abendroth, M., Demuth, C., Settgast, C., Trimis, D., Krause, H. & Ray, S. (2017). Influence of foam morphology on effective properties related to metal melt filtration. Advanced Engineering Materials. 19(9), 1700240. DOI: 10.1002/adem.201700240.
- [15] Demuth, C., Werzner, E., Mendes, M., Krause, H., Trimis, D. & Ray, S. (2017). Non-Isothermal simulations of aluminium depth filtration. Advanced Engineering Materials. 19(9), 1700238. DOI: 10.1002/adem.201700238.
- [16] Fankhänel, B., Stelter, M., Voigt, C. & Aneziris, C. G. (2017). Interaction of AlSi7Mg with oxide ceramics. Advanced Engineering Materials. 19(9), 1700084. DOI: 10.1002/adem.201700084.
- [17] Campbell, J. (1991). Castings. Oxford: Butterworth-Heinemann Ltd.
- [18] Campbell, J. (2011). Complete casting handbook: metal casting processes, metallurgy, techniques and design. Oxford: Butterworth-Heinemann Ltd.
- [19] Voigt, C., Jäckel, E., Taina, F., Zienert, T., Salomon, A., Wolf, G., Aneziris, C. G. & Le Brun, P. (2017). Filtration efficiency of functionalized ceramic foam filters for aluminum melt filtration. Metallurgical and Materials Transactions B. 48(1), 497-505. DOI: 10.1007/s11663-016-0869-5.
- [20] Le Brun, P., Taina, F., Voigt, C., Jäckel, E., Aneziris, C. G. (2016). Assessment of active filters for high quality aluminium cast products. In E. Williams (Eds.), Light Metals 2016 (pp. 785-789). Basel: Springer International Publishing.
- [21] Olson III, R.A. & Martins, L.C.B. (2005). Cellular ceramics in metal filtration. Advanced Engineering Materials. 7(4), 187-192. DOI: 10.1002/adem.200500021.
- [22] Damoah, L.N.W. & Zhang, L. (2010). removal of inclusions from aluminum through filtration. Metallurgical and Materials Transactions B. 41(4), 886-907. DOI: 10.1007/s11663-010-9367-3.
- [23] Beffort, O. (2002). Metal matrix composites: properties, applications and machining (in German), in 6. Internationales IWF-Kolloquium, 18-19 April 2002 (pp. 43-52). Egerkingen, Schweiz: ETH Zürich.
- [24] Pai, B.C., Pillai, R. & Satyanarayana, K. (1993). Stir cast aluminium alloy matrix composites. Key Engineering Materials. 79-80, 117-128. DOI: 10.4028/www.scientific. net/KEM.79-80.117.
- [25] Rajan, T.P.D., Pillai, R.M. & Pai, B.C. (1998). Reinforcement coatings and interfaces in aluminium metal matrix composites. Journal of Material Science. 33, 3491-3503. DOI: 10.1023/A:1004674822751.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c91922a7-c690-42d8-9798-ff0e89e0fda2