Identyfikatory
Warianty tytułu
Zaawansowane techniki przetwarzania danych pochodzących z lotniczego skaningu laserowego z rejestracją pełnych profili energii
Języki publikacji
Abstrakty
This article presents an overview of advanced processing techniques of full-waveform airborne laser scanning data. The well known processing methods, such as signal decomposition or correlation techniques, could not be sufficient for the processing of strongly deformed or complex reflected echo data. The first part of this paper describes the advanced processing techniques. The radiometric calibration procedure and advanced waveform decomposition methods, as well as algorithms for the detection of weak and overlapping echoes are presented. The second part focuses on the possibility of point cloud classification improvement based on full-waveform data. The usefulness of particular full-waveform parameters in the classification process is described.
W artykule zamieszczono przegląd zaawansowanych technik przetwarzania pełnych profili energii zarejestrowanych przez systemy lidarowe. Popularne metody przetwarzania danych, takie jak dekompozycja sygnału czy metody korelacyjne, mogą się nie sprawdzić w sytuacjach, gdy odbity sygnał laserowy jest silnie zdeformowany lub gdy odległość pomiędzy dwoma echami jest mniejsza niż długość emitowanego impulsu. W pierwszej części publikacji opisano zaawansowane techniki przetwarzania zarejestrowanej, odbitej energii laserowej. Scharakteryzowano metodę kalibracji radiometrycznej sygnału, opisano zaawansowane techniki dekompozycji falek oraz metody detekcji słabych i nachodzących na siebie odbić. Część druga poświęcona została klasyfikacji chmury punktów ze szczególnym uwzględnieniem dodatkowych parametrów, wyznaczanych na podstawie profili energii. Opisana została przydatność poszczególnych parametrów w klasyfikacji.
Czasopismo
Rocznik
Tom
Strony
85--95
Opis fizyczny
Bibliogr. 25 poz., wykr.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Mining Surveying and Environmental Engineering, Department of Geoinformation, Photogrammetry and Remote Sensing of Environment, Kraków, Poland
Bibliografia
- [1] Bretar F., Chauve A., Mallet C, Jutzi B.: Managing full waveform LIDAR data: A challenging task for the fortheoming years. The Internal Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVII-B1, 2008, pp. 415-420.
- [2] Duong H., Pfeifer N., Lindenbergh R.: Full waveform analysis: ICESat laser data for land cover classification. ISPRS Mid-term Symposium, Remote Sensing: From Pixels to Processes, 2006, pp. 8-11.
- [3] Heinzel J., Koch B.: Exploring full-waveform LiDAR parameters for tree species classification. International Journal of Applied Earth Observation and Geoinformation, vol. 13(1), 2011, pp. 152-160.
- [4] Hofle B., Hollaus M., Hagenauer J.: Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 67, 2012, pp. 134-147.
- [5] Hofle B., Hollaus M, Lehner H., Pfeifer N., Wagner W.: Area-based parameterization of forest structure using full-waveform airborne laser scanning data. SilviLaser 2008, 8th International Conference on LiDAR Applications in forest assessment and inventory, Heriot-Watt University, Edinburgh, UK, 17-19 September, 2008.
- [6] Hu B., Gumerov D., Wang J.-G.:An intergation approach to aceurateDEM generation using airborne full waveform LiDAR data. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVIII-5/W12, 2011, pp. 237-241.
- [7] Jutzi B., Stilla U.: Laser pulse analysis for reconstruction and classification of urban objects. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXIV-3/W8, 2003, pp. 151-156.
- [8] Jutzi B., Stilla U.: Range determination with waveform recording laser systems using a Wiener Filter. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 61(2), 2006, pp. 95-107.
- [9] Lin Y.-C., Mills J., Smith-Voysey S.: Detection of weak and overlapping pulses from waveform airborne laser scanning data. SilviLaser 2008, 8th International Conference on LiDAR Applications in forest assessment and inventory, Heriot-Watt University, Edinburgh, UK, 17-19 September, 2008, pp. 478-487.
- [10] Mallet C, Bretar F., Roux M., Soergel U., Heipke C: Relevance assessment of full-waveform Udar data for urban area classification. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 66(6), supplement, 2011, pp. S71-S84.
- [11] Mallet C, Bretar F., Soergel U.: Analysis of full-waveform lidar data for classification of urban areas. Photogrammetrie Fernerkundung Geolnformation (PFG), vol. 5, 2008, pp. 337-349.
- [12] Mallet C, Bretar F.: Full-waveform topographic lidar: State-of-the-art. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 64(1), 2009, pp. 1-16.
- [13] Mallet C, Lafarge F., Roux M., Soergel U., Bretar F., Heipke C: A marked point process for modeling lidar waveforms. Image Processing, IEEE Transactions on, vol. 19(12), 2010, pp. 3204-3221.
- [14] Molnar B., Laky S., Toth C: Using Full Waveform Data in Urban Areas. The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sdences, vol. XXXVIII-3/W22, 2011, pp. 203-208.
- [15] Parrish C.E.: Exploiting full-waveform lidar data and multiresolution wavelet analysis for vertical object detection and recognition. Geosdence and Remote Sensing Symposium, IGARSS 2007, IEEE International, 2007, pp. 2499-2502.
- [16] Persson A., Soderman U., Topel J., Ahlberg S.: Visualization and analysis of full-waveform airborne laser scanner data. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVI-3/W19, 2005, pp. 103-108.
- [17] Reitberger J., Krzystek P., Stilla U.: Analysis of full waveform lidar data for tree species classification. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVI-3, 2006, pp. 228-233.
- [18] Reitberger J., Krzystek P., Stilla U.: Benefit of airborne full waveform lidar for 3D segmentation and classification of single trees. ASPRS 2009 Annual Conference, Baltimore, Maryland (USA), 2009.
- [19] Słota M.: Full-waveform Airborne Laser Scanning Data Processing Techniques. Geomatics and Environmental Engineering, vol. 8, no. 1, 2014, pp. 61-74.
- [20] Stilla U., Yao W., Jutzi B.: Detection of weak laser pulses by full waveform stacking. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sdences, vol. XXXVI-3/W49A, 2007, pp. 25-30.
- [21] Toth Ch.K., Zaletnyik P., Laky S., Grejner-Brzezinska D.A.: Peak detection from full-waveform LiDAR data. International LiDAR Mapping Forum, New Orleans, Louisiana, 2011.
- [22] Wagner W., Hollaus M., Briese C., Ducic V.: 3D vegetation mapping using small-footprint full-waveform airborne laser scanners. International Journal of Remote Sensing, vol. 29(5), 2008, pp. 1433-1452.
- [23] Wagner W., Ullrich A., Ducic V., Melzer T., Studnicka N.: Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 60(2), 2006, pp. 100-112.
- [24] Wang C.K.: Exploring weak and overlapped returns of a lidar waveform with a wavelet-based echo detector. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXIX-B7, 2012, pp.529-534.
- [25] Zhu J., Zhanga Z., Hu X., Lia Z.: Analysis and application of LiDAR waveform data using a progressive waveform decomposition method. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVIII-5/W12, 2011, pp. 31-36.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c9182a7d-c26c-48b3-bbe7-7cf01a0bf104