PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present an overview of our technological achievements in the implementation of detector structures based on mercury cadmium telluride (MCT) heterostructures and nanostructures for IR and THz spectral ranges. We use a special MBE design set for the epitaxial layer growth on (013) GaAs substrates with ZnTe and CdTe buffer layers up to 3” in diameter with the precise ellipsometric monitoring in situ. The growth of MCT alloy heterostructures with the optimal composition distribution throughout the thickness allows the realization of different types of many-layered heterostructures and quantum wells to prepare the material for fabricating single- or dual-band IR and THz detectors. We also present the two-color broad-band bolometric detectors based on the epitaxial MCT layers that are sensitive in 150–300-GHz subterahertz and infrared ranges from 3 to 10μm, which operate at the ambient or liquid nitrogen temperatures as photoconductors, as well as the detectors based on planar HgTe quantum wells. The design and dimensions of THz detector antennas are optimized for reasonable detector sensitivity values. A special diffraction limited optical system for the detector testing was designed and manufactured. We represent here the THz images of objects hidden behind a plasterboard or foam plastic packaging, obtained at the radiation frequencies of 70, 140, and 275 GHz, respectively.
Słowa kluczowe
Rocznik
Strony
282--290
Opis fizyczny
Bibliogr. 42 poz., wykr., rys., fot.
Twórcy
  • Rzanov Institute of Semiconductor Physics SB RAS, 13 Lavrentyev aven., Novosibirsk, 630090, Russia
  • Tomsk State University, 36 Lenin aven., 634050, Tomsk, Russia
  • Rzanov Institute of Semiconductor Physics SB RAS, 13 Lavrentyev aven., Novosibirsk, 630090, Russia
  • Novosibirsk State University, 1 Pirogov str., Novosibirsk, 630090, Russia
  • Rzanov Institute of Semiconductor Physics SB RAS, 13 Lavrentyev aven., Novosibirsk, 630090, Russia
  • Rzanov Institute of Semiconductor Physics SB RAS, 13 Lavrentyev aven., Novosibirsk, 630090, Russia
autor
  • Rzanov Institute of Semiconductor Physics SB RAS, 13 Lavrentyev aven., Novosibirsk, 630090, Russia
autor
  • Rzanov Institute of Semiconductor Physics SB RAS, 13 Lavrentyev aven., Novosibirsk, 630090, Russia
  • Rzanov Institute of Semiconductor Physics SB RAS, 13 Lavrentyev aven., Novosibirsk, 630090, Russia
  • Rzanov Institute of Semiconductor Physics SB RAS, 13 Lavrentyev aven., Novosibirsk, 630090, Russia
  • Lashkaryov Institute of Semiconductor Physics NAS, Ukraine, 41 Nauki aven., 03028, Kyiv, Ukraine
  • Lashkaryov Institute of Semiconductor Physics NAS, Ukraine, 41 Nauki aven., 03028, Kyiv, Ukraine
autor
  • Lashkaryov Institute of Semiconductor Physics NAS, Ukraine, 41 Nauki aven., 03028, Kyiv, Ukraine
  • Lashkaryov Institute of Semiconductor Physics NAS, Ukraine, 41 Nauki aven., 03028, Kyiv, Ukraine
  • Lashkaryov Institute of Semiconductor Physics NAS, Ukraine, 41 Nauki aven., 03028, Kyiv, Ukraine
autor
  • Lashkaryov Institute of Semiconductor Physics NAS, Ukraine, 41 Nauki aven., 03028, Kyiv, Ukraine
  • Rzanov Institute of Semiconductor Physics SB RAS, 13 Lavrentyev aven., Novosibirsk, 630090, Russia
autor
  • Rzanov Institute of Semiconductor Physics SB RAS, 13 Lavrentyev aven., Novosibirsk, 630090, Russia
Bibliografia
  • [1] M.A. Kinch, Fundamental physics of infrared detector materials, J. Korean Inst.Electr. Electron. Mater. Eng. 29 (2000) 809–817, http://dx.doi.org/10.1007/s11664-000-0229-7.
  • [2] M.A. Kinch, HgCdTe: recent trends in the ultimate IR semiconductor, J. KoreanInst. Electr. Electron. Mater. Eng. 39 (2010) 1043–1052, http://dx.doi.org/10.1007/s11664-010-1087-6.
  • [3] A. Rogalski, Infrared Detectors, second edition, Taylor & Francis Group, 2011.
  • [4] A. Rogalski, Infrared detectors: an overview, Infrared Phys. Technol. 43 (2002)187–210, http://dx.doi.org/10.1016/S1350-4495(02)00140-8.
  • [5] A. Rogalski, J. Antoszewski, L. Faraone, Third-generation infrared photodetector arrays, J. Appl. Phys. 105 (2009), http://dx.doi.org/10.1063/1.3099572, 091101(1-43).
  • [6] S.S. Dhillon, M.S. Vitiello, E.H. Linfield, et al., The 2017 terahertz science and technology roadmap, J. Phys. D: App. Phys. 50 (2017)p. 043001, http://dx.doi.org/10.1088/1361-6463/50/4/043001.
  • [7] R.A. Lewis, A review of terahertz sources, J. Phys. D: Appl. Phys. 47 (2014)374001, http://dx.doi.org/10.1088/0022-3727/47/37/374001.
  • [8] T. Hochrein, Markets, availability, notice, and technical performance ofterahertz systems: Historic development, present, and trends, J. Infrared Millim. Terahertz Waves 36 (2015) 235–254.
  • [9] F. Sizov, THz radiation detectors: state-of-the art, Semicond. Sci. Technol. 33(2018) 26, http://dx.doi.org/10.1088/1361-6641/aae473, 123001.
  • [10] E.B. Olshanetsky, S. Sassine, Z.D. Kvon, N.N. Mikhailov, S.A. Dvoretsky, J.C.Portal, A.L. Aseev, Quantum Hall liquid-insulator and plateau-to-plateautransitions in a high mobility 2DEG in a HgTe quantum well, Pis’ma v ZhETF84 (2006) 661–665, http://dx.doi.org/10.1134/S0021364006220085.
  • [11] W.D. Lawson, S. Nielson, E.H. Putley, A.S. Young, W.D. Lawson, S. Nielson, E.H.Putley, A.S. Young, Preparation and properties of HgTe and mixed crystals ofHgTe-CdTe, J. Phys. Chem. Solids 9 (1959) 325–329, http://dx.doi.org/10.1016/0022-3697(59)90110-6.
  • [12] Z.D. Kvon, E.B. Olshanetsky, D.A. Kozlov, N.N. Mikhailov, S.A. Dvoretsky,Two-dimensional electron-hole system in a HgTe-based quantum well, JETPLett. 87 (2008) 502–505, http://dx.doi.org/10.1134/S0021364008090117.
  • [13] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L.Qi, Sh.-Ch. Zhang, Quantum spin hall insulator state in HgTe quantum wells,Science 318 (2007) 766–770, http://dx.doi.org/10.1126/science.1148047.
  • [14] P. Norton, HgCdTe infrared detectors, Opto-Electron. Rev. 10 (2002) 159–174.
  • [15] W. Lei, J. Antoszewski, L. Faraone, Progress, challenges, and opportunities forHgCdTe infrared materials and detectors, Appl. Phys. Rev. 2 (2015) 041303,http://dx.doi.org/10.1063/1.3056393.
  • [16] Yu.G. Sidorov, S.A. Dvoretsky, N.N. Mikhhailov, M.V. Yakushev, V.S. Varavin,A.P. Antsiferov, Molecular-beam epitaxy of narrow-band CdxHg1-xTe.Equipment and technology, J. Opt. Technol. 67 (2000) 31–36, http://dx.doi.org/10.1364/JOT.67.000031.
  • [17] K.K. Svitashev, S.A. Dvoretsky, Yu.G. Sidorov, A.S. Mardezhov, I.E. Nis, V.S.Varavin, V.I. Liberman, V.G. Remesnik, The growth of high-quality MCT filmsby MBE using in-situ ellipsometry, Cryst. Res. Technol. 29 (1994) 931–937, http://dx.doi.org/10.1002/crat.2170290703.
  • [18] E.V. Spesivtsev, S.V. Rykhlitski, Licence No 16314 Bulletin “Useful Models.Industrial Samples”, vol. 35, 2000 (in Russian).
  • [19] Yu.G. Sidorov, S.A. Dvoretsky, N.N. Mikhailov, M.V. Yakushev, I.V. Sabinina, Molecular beam epitaxy of MCT solid solution on alternative substrate, Semiconductors 35 (2001) p. 1045, http://dx.doi.org/10.1134/1.1403569.
  • [20] V.A. Shvets, N.N. Mikhailov, M.V. Yakushev, E.V. Spesivtsev, Ellipsometric measurements of the optical constants of solids under impulse heating, Proc. SPIE 4900 (2002) 46–52, http://dx.doi.org/10.1117/12.484591.
  • [21] V.A. Shvets, S.V. Rykhlitski, E.V. Spesivtsev, N.A. Aulchenko, N.N. Mikhailov, S.A. Dvoretsky, Yu.G. Sidorov, R.N. Smirnov, In situ ellipsometry for control ofHg1-xCdxTe nanolayer structures and ingomogeneous during MBE growth,Thin Solid Films 455–456 (2004) 688–694, http://dspace.nbuv.gov.ua/handle/123456789/118333.
  • [22] V.S. Varavin, S.A. Dvoretsky, V.I. Liberman, N.N. Mikhailov, Yu.G. Sidorov, Molecular beam epitaxy of high quality Hg1-xCdxTe films with control of thecomposition distribution, J. Cryst. Growth 159 (1996) p. 1161–1166, http://dx.doi.org/10.1016/0022-0248(95)00845-4.
  • [23] V.M. Osadchiy, A.O. Suslyakov, V.V. Vasil’ev, S.A. Dvoretsky, The effectiveminority lifetime in CdHgTe with graded layers grown by MBE, Avtometriya 4(1998) 71–77 (in Russian).
  • [24] S.M. Johnson, D.R. Rhiger, J.P. Rosbeck, J.M. Peterson, S.M. Taylor, M.E. Boyd, Effect of dislocations on the electrical and optical properties oflong-wavelength infrared HgCdTe photovoltaic detectors, J. Vac. Sci. Technol.B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 10 (1992) p. 1499–1506, http://dx.doi.org/10.1116/1.586278.
  • [25] P.A. Bakhtin, S.A. Dvoretskii, V.S. Varavin, A.P. Korobkin, N.N. Mikhailov, I.V.Sabinina, Yu.G. Sidorov, Effect of low-temperature annealing on electrical properties of n-HgCdTe, Semiconductors 38 (2004) p. 1172, http://dx.doi.org/10.1134/1.1808823.
  • [26] S. Dvoretsky, N. Mikhailov, Yu. Sidorov, V. Shvets, S. Danilov, B. Wittman, S.Ganichev, Growth of HgTe quantum wells for IR to THz detectors, J. Electron. Mater. 39 (2010) 918–923, http://dx.doi.org/10.1007/s11664-010-1191-7.
  • [27] H. Arwin, D.E. Aspnes, Nondestructive analysis of Hg1−xCdxTe (x=0.00, 0.20,0.29, and 1.00) by spectroscopic ellipsometry. II. Substrate, oxide, andinterface properties, J. Vac. Sci. Technol. A 2 (1984) p. 1316, http://dx.doi.org/10.1116/1.572401.
  • [28] L. Vina, C. Umbach, M. Cardona, L. Vodopjanov, Ellipsometric studies ofelectronic interband transitions in CdxHg1-xTe, Phys. Rev. B 29 (1984) p. 6752–6760, http://dx.doi.org/10.1103/PhysRevB.29.6752.
  • [29] F. Sizov, Z. Tsybrii, V. Zabudsky, M. Sakhno, A. Shevchik-Shekera, M. Smoliy, E. Dieguez, S. Dvoretsky, Possibility of the detection in IR and sub/THz spectralregion using MCT thin layer receivers: design of the chip, optical elementsand antenna pattern, IEEE MMS 2015 (2015) 49–52, http://dx.doi.org/10.1109/MMS.2015.7375429.
  • [30] F. Sizov, Z. Tsybrii, V. Zabudsky, O. Golenkov, V. Petryiakov, S. Dvoretsky, N.Michailov, A. Shevchik-Shekera, I. Lysiuk, E. Dieguez,Mercury–cadmium–telluride thin layers as sub-terahertz and infrareddetectors, Opt. Eng. 54 (2015) p. 12127102, http://dx.doi.org/10.1117/1.OE.54.12.127102.
  • [31] V. Dobrovolski, F. Sizov, THz/sub-THz bolometer based on electron heating ina semiconductor waveguide, Optoelectr. Rev. 18 (2010) 250–258, http://dx.doi.org/10.2478/s11772-010-1033-8.
  • [32] M.A. Kinch, B.V. Rollin, Detection of millimetre and sub-millimetre waveradiation by free carrier absorption in a semiconductor, Brit. J. Appl. Phys. 14(1963) 672–676, http://dx.doi.org/10.1088/0508-3443/14/10/317.
  • [33] V. Zabudsky, F. Sizov, N. Momot, Z. Tsybrii, N. Sakhno, S. Bunchuk, N. Michailov, V. Varavin, THz/sub-THz direct detection detector on the base of electrons/holes heating in MCT layers, Semicond. Sci. Technol. 27 (2012) p. 045002, http://dx.doi.org/10.1088/0268-1242/27/4/045002.
  • [34] M. Sakhno, A. Golenkov, F. Sizov, Uncooled detector challenges:millimeter-wave and terahertz long channel field effect transistor and Schottky barrier diode detectors, J. Appl. Phys. 114 (2013) 164503, http://dx.doi.org/10.1063/1.4826364.
  • [35] F. Sizov, V. Zabudsky, S. Dvoretskii, V. Petryakov, O. Golenkov, K. Andreyeva, Z.Tsybrii, Two-colour detector: mercury-cadmium-telluride as a terahertz andinfrared detector, Appl. Phys. Lett. 106 (2015) p. 082104, http://dx.doi.org/10.1063/1.4913590.
  • [36] A.C. Balanis, Antenna Theory: Analysis and Design, 3rd ed., J. Wiley & Sons,Inc., New York, 2005.
  • [37] G. Chekanova, M. Nikitin, S. Lartsev, V. Varavin, N. Michailov, Photo resistive infrared detectors on the base of CdHgTe/CdTe/ZnTe/GaAs heterostructures,in: A. Aseev (Ed.), Photoreceivers on the Base of Mercury-Cadmium-Telluride Epitaxial System, 2012, pp. 202–207, Novosibirsk, Russia (in Russian).
  • [38] J. Piotrowski, A. Rogalski, Uncooled long wavelength infrared photondetectors, Infr. Phys. Technol. 46 (2004) 115–131, http://dx.doi.org/10.1016/j.infrared.2004.03.016.
  • [39] F. Gouider, M. Bugár, J. Könemann, Yu.B. Vasilyev, C. Brüne, H. Buhmann, G. Nachtwei, THz photoresponse and magnetotransport of detectors made ofHgCdTe/HgTe quantum well structures, J. Phys.: Conf. Ser. 193 (2009) p. 012066, http://dx.doi.org/10.1088/1742-6596/193/1/012066.
  • [40] A.M. Kadykov, C. Consejo, M. Marcinkiewicz, L. Viti, M.S. Vitiello, S.S.Krishtopenko, S. Ruffenach, S.V. Morozov, W. Desrat, N. Dyakonova, W. Knap,V.I. Gavrilenko, N.N. Mikhailov, S.A. Dvoretsky, F. Teppe, Observation of topological phase transition by terahertz photoconductivity in HgTe-basedtransistors, Phys. Status Solidi C 13 (2016) 534–537, http://dx.doi.org/10.1063/1.4932943.
  • [41] D.A. Kozlov, Z.D. Kvon, N.N. Mikhailov, S.A. Dvoretskii, S. Weishäupl, Y.Krupko, J.-C. Portal, Quantum hall effect in HgTe quantum wells at nitrogentemperatures, Appl. Phys. Lett. 105 (2014) 132102, http://dx.doi.org/10.1063/1.4896682.
  • [42] S.N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L.E. Golub, E.V.Beregulin, Z.D. Kvon, N.N. Mikhailov, S.A. Dvoretsky, V.A. Shalygin, N.Q. Vinh,A.F.G. van der Meer, B. Murdin, S.D. Ganichev, J. Appl. Phys. 105 (2009) p. 013106, http://dx.doi.org/10.1063/1.3056393.
Uwagi
1. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
2. Funding This work was partially supported by grants RBFR “18-52-16007NTSIL a”, “18-52-16008 NTSIL a” and the Volkswagen Stiftung Program, and NANO Program.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c91591d2-1d8f-401c-b0d9-8126ef3d7509
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.